Zinc (Zn) is an important micronutrient for the physiology of plants. It is poorly available to the plants in soil solution. A pot experiment was conducted to evaluate effectiveness of various Zn application methods on key enzyme activities and protein content of two contrasting rice genotypes viz., PD16 (Zn efficient) and NDR359 (Zn inefficient). The treatments were, control (0 mg Zn kg Among all the methods tested soil+foliar application of Zn fertilizers was found most effective in increasing superoxide dismutase (SOD) and carbonic anhydrase (CA) activities as well as chlorophyll and protein content in both the rice varieties. NDR359, showed higher enzyme activities and more chlorophyll content in leaves than PD16, when Zn was applied either through foliar spray alone or in soil along with foliar application. Regarding the protein content in grains, PD16 showed higher protein content than NDR359, thus showed better translocation of Zn from leaves to grains.
Nitrogen use efficiency, more specifically physiological nitrogen use efficiency depends primarily on management of N, one of the major essential nutrients. It is required in increased agricultural production and may possibly cause soil toxicity if fed in excess. Rate of N fertilizer application in fertile agricultural field and improved productivity in sterile soils require the improvement of NUE. A field experiment was therefore conducted to evaluate the effect of different N levels (N 0 , N 50 , N 100 and N 200 ) on rice genotypes. Vegetative plant growth was found to be reduced under N 0 while improved at N 200 level. Among the genotypes, highest PNUE (34.94) and correspondingly higher yield (7.15 ton ha -1 ) was observed for Krishna Hamsa. The other traits viz. plant height, no. of productive tillers and LAI exhibited higher values for Krishna Hamsa as well. Hence these can be utilized as physiological markers for the selection of rice genotypes efficient in N use.
Melatonin, a hormone known for its role in regulating sleep–wake cycles in mammals, has been found to have diverse functions in horticultural plants. In recent years, research has revealed the involvement of melatonin in variousphysiological processes in plants, likeregulation of growth and development, stress tolerance, and antioxidant defense. Melatonin can augment seed germination, roots, shoot growth, and biomass accumulation in horticultural crops. It also performs a vital role in regulating vegetative and reproductive growth stages, floral transition, and leaf senescence. Melatonin improves stress tolerance in cropsby regulating root architecture, nutrient uptake, and ion transport. Additionally, melatonin works like a broad-spectrum antioxidant by scavenging reactive oxygen species and enhancing antioxidant activity. The mechanism of action of melatonin in horticultural plants involves gene expressions, hormone signaling pathways, and antioxidant defense pathways. Melatonin also interacts with other plant growth regulators (PGRs), comprising auxins, cytokinins, and abscisic acid to coordinate various physiological processes in plants. Melatonin has evolvedas a versatile chemical entitywith diverse functions in horticultural plants, and its potential applications in crop production and stress management are increasingly being explored. This reviewaimsto provide a comprehensive insight into the present state of knowledge about melatonin and its role in horticulturally important plants and identify avenues for further research and practical applications. Further study must be conductedto fully elucidatethe mechanisms of melatonin action in crops and to outline effective strategies for its practical use in horticultural practices.
Large scale deficiency of Zn results in low crops yields and the problem of Zn malnutrition in humans and livestock. To economize crop production on Zn deficient soils, two-year field experiments were undertaken with two wheat varieties to evaluate the performance of seed inoculation with a consortium of three bacterial strains in combination with varying doses of Zn fertilizer applied to 1 year rice crop on yields, Zn concentration and Zn uptake of wheat. Seed coating of wheat with bacterial consortium significantly increased grain yields, Zn concentration and uptake in grains and straw and total Zn uptake over the control. It also helped to increase the apparent recoveries of soil applied Zn fertilizer to 1 year rice by succeeding wheat crops and DTPA extractable Zn in soil after 2 year wheat in comparison to the control. Seed inoculation in combination with low dosage of Zn also significantly decreased phytic acid: Zn ratio but increased methionine concentration in wheat grains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.