Spectrograms -time-frequency representations of audio signals -have found widespread use in neural network-based spoofing detection. While deep models are trained on the fullband spectrum of the signal, we argue that not all frequency bands are useful for these tasks. In this paper, we systematically investigate the impact of different subbands and their importance on replay spoofing detection on two benchmark datasets: ASVspoof 2017 v2.0 and ASVspoof 2019 PA. We propose a joint subband modelling framework that employs n different sub-networks to learn subband specific features. These are later combined and passed to a classifier and the whole network weights are updated during training. Our findings on the ASVspoof 2017 dataset suggest that the most discriminative information appears to be in the first and the last 1 kHz frequency bands, and the joint model trained on these two subbands shows the best performance outperforming the baselines by a large margin. However, these findings do not generalise on the ASVspoof 2019 PA dataset. This suggests that the datasets available for training these models do not reflect real world replay conditions suggesting a need for careful design of datasets for training replay spoofing countermeasures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.