SummaryNatural genetic transformation in Streptococcus pneumoniae is controlled in part by a quorum-sensing system mediated by a peptide pheromone called competence-stimulating peptide (CSP), which acts to coordinate transient activation of genes required for competence. To characterize the transcriptional response and regulatory events occurring when cells are exposed to competence pheromone, we constructed DNA microarrays and analysed the temporal expression profiles of 1817 among the 2129 unique predicted open reading frames present in the S. pneumoniae TIGR4 genome (84%). After CSP stimulation, responsive genes exhibited four temporally distinct expression profiles: early, late and delayed gene induction, and gene repression. At least eight early genes participate in competence regulation including comX , which encodes an alternative sigma factor. Late genes were dependent on ComX for CSPinduced expression, many playing important roles in transformation. Genes in the delayed class (third temporal wave) appear to be stress related. Genes repressed during the CSP response include ribosomal protein loci and other genes involved in protein synthesis. This study increased the number of identified CSP-responsive genes from approximately 40 to 188. Given the relatively large number of induced genes (6% of the genome), it was of interest to determine which genes provide functions essential to transformation. Many of the induced loci were subjected to gene disruption mutagenesis, allowing us to establish that among 124 CSP-inducible genes, 67 were individually dispensable for transformation, whereas 23 were required for transformation.
Recent studies have shown that there is a considerable heterogeneity in the response of melanoma cell lines to MEK and BRAF inhibitors. In the current study, we address whether dysregulation of cyclin-dependent kinase 4 (CDK4) and/or cyclin D1 contribute to the BRAF inhibitor resistance of melanoma cells. Mutational screening identified a panel of melanoma cell lines that harbored both a BRAF V600E mutation and a CDK4 mutation: K22Q (1205Lu), R24C (WM39, WM46, and SK-Mel-28), and R24L (WM902B). Pharmacologic studies showed that the presence of a CDK4 mutation did not alter the sensitivity of these cell lines to the BRAF inhibitor. The only cell line with significant BRAF inhibitor resistance was found to harbor both a CDK4 mutation and a CCND1 amplification. Array comparative genomic hybridization analysis showed that CCND1 was amplified in 17% of BRAF V600E -mutated human metastatic melanoma samples, indicating the clinical relevance of this finding. As the levels of CCND1 amplification in cell lines are lower than those seen in clinical specimens, we overexpressed cyclin D1 alone and in the presence of CDK4 in a drug-sensitive melanoma line. Cyclin D1 overexpression alone increased resistance and this was enhanced when cyclin D1 and CDK4 were concurrently overexpressed. In conclusion, increased levels of cyclin D1, resulting from genomic amplification, may contribute to the BRAF inhibitor resistance of BRAF V600E -mutated melanomas, particularly when found in the context of a CDK4 mutation/ overexpression. [Mol Cancer Ther 2008;7(9):2876 -83]
Regulation of classic cadherins plays a critical role in tissue remodeling during development and cancer; however, less attention has been paid to the importance of desmosomal cadherins. We previously showed that EGFR inhibition results in accumulation of the desmosomal cadherin, desmoglein 2 (Dsg2), at cell-cell interfaces accompanied by inhibition of matrix metalloprotease (MMP)-dependent shedding of the Dsg2 ectodomain and tyrosine phosphorylation of its cytoplasmic domain. Here, we show that EGFR inhibition stabilizes Dsg2 at intercellular junctions by interfering with its accumulation in an internalized cytoplasmic pool. Furthermore, MMP inhibition and ADAM17 RNAi, blocked shedding and depleted internalized Dsg2, but less so E-cadherin, in highly invasive SCC68 cells. ADAM9 and 15 silencing also impaired Dsg2 processing, supporting the idea that this desmosomal cadherin can be regulated by multiple ADAM family members. In contrast, ADAM10 siRNA enhanced accumulation of a 100-kDa Dsg2 cleavage product and internalized pool of Dsg2. Although both MMP and EGFR inhibition increased intercellular adhesive strength in control cells, the response to MMP-inhibition was Dsg2-dependent. These data support a role for endocytic trafficking in regulating desmosomal cadherin turnover and function and raise the possibility that internalization and regulation of desmosomal and classic cadherin function can be uncoupled mechanistically. INTRODUCTIONThe ability of cells to modulate their contacts with each other and the underlying matrix is essential for epithelial remodeling that occurs in development and cancer progression (Behrens, 1999;Thiery, 2003;Kramer et al., 2005). In particular, members of cadherin family of calcium-dependent intercellular adhesion molecules have been demonstrated to both suppress (Frixen et al., 1991) and promote (Islam et al., 1996) cell migration and invasion. Although classic cadherins assemble into intercellular adhesive structures known as adherens junctions that associate with the cortical actin cytoskeleton, desmosomal cadherins, including desmogleins and desmocollins, make up the adhesive core of desmosomes, which anchor intermediate filaments (IF) to sites of strong intercellular adhesion (Green and Simpson, 2007).Anchorage to the IF cytoskeleton is established with the cooperation of the desmosomal cadherin-associated proteins plakoglobin and plakophilins, which in turn link the IF-associated protein desmoplakin (DP) to the membrane complex. Desmosomes provide mechanical integrity to epithelial and heart tissues by redistributing the forces of mechanical stress . In addition, desmosomal cadherins have more recently emerged as playing a role in tissue morphogenesis (Runswick et al., 2001;Chidgey and Dawson, 2007;Dusek et al., 2007).In spite of desmosomes' importance in tissue function, most studies have focused on the contribution of classic cadherins to epithelial remodeling. Classic cadherins engage in bidirectional signaling with receptor tyrosine kinases (RTKs), whereby they are both ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.