Every data and kind of data need a physical drive to store it. There has been an explosion in the volume of images, video, and other similar data types circulated over the internet. Users using the internet expect intelligible data, even under the pressure of multiple resource constraints such as bandwidth bottleneck and noisy channels. Therefore, data compression is becoming a fundamental problem in wider engineering communities. There has been some related work on data compression using neural networks. Various machine learning approaches are currently applied in data compression techniques and tested to obtain better lossy and lossless compression results. A very efficient and variety of research is already available for image compression. However, this is not the case for video compression. Because of the explosion of big data and the excess use of cameras in various places globally, around 82% of the data generated involve videos. Proposed approaches have used Deep Neural Networks (DNNs), Recurrent Neural Networks (RNNs), and Generative Adversarial Networks (GANs), and various variants of Autoencoders (AEs) are used in their approaches. All newly proposed methods aim to increase performance (reducing bitrate up to 50% at the same data quality and complexity). This paper presents a bibliometric analysis and literature survey of all Deep Learning (DL) methods used in video compression in recent years. Scopus and Web of Science are well-known research databases. The results retrieved from them are used for this analytical study. Two types of analysis are performed on the extracted documents. They include quantitative and qualitative results. In quantitative analysis, records are analyzed based on their citations, keywords, source of publication, and country of publication. The qualitative analysis provides information on DL-based approaches for video compression, as well as the advantages, disadvantages, and challenges of using them.
Question Answer System (QAS) automatically answers the question asked in natural language. Due to the varying dimensions and approaches that are available, QAS has a very diverse solution space, and a proper bibliometric study is required to paint the entire domain space. This work presents a bibliometric and literature analysis of QAS. Scopus and Web of Science are two well-known research databases used for the study. A systematic analytical study comprising performance analysis and science mapping is performed. Recent research trends, seminal work, and influential authors are identified in performance analysis using statistical tools on research constituents. On the other hand, science mapping is performed using network analysis on a citation and co-citation network graph. Through this analysis, the domain’s conceptual evolution and intellectual structure are shown. We have divided the literature into four important architecture types and have provided the literature analysis of Knowledge Base (KB)-based and GNN-based approaches for QAS.
Clouds play a vital role in Earth’s water cycle and the energy balance of the climate system; understanding them and their composition is crucial in comprehending the Earth–atmosphere system. The dataset “Understanding Clouds from Satellite Images” contains cloud pattern images downloaded from NASA Worldview, captured by the satellites divided into four classes, labeled Fish, Flower, Gravel, and Sugar. Semantic segmentation, also known as semantic labeling, is a fundamental yet complex problem in remote sensing image interpretation of assigning pixel-by-pixel semantic class labels to a given picture. In this study, we propose a novel approach for the semantic segmentation of cloud patterns. We began our study with a simple convolutional neural network-based model. We worked our way up to a complex model consisting of a U-shaped encoder-decoder network, residual blocks, and an attention mechanism for efficient and accurate semantic segmentation. Being an architecture of the first of its kind, the model achieved an IoU score of 0.4239 and a Dice coefficient of 0.5557, both of which are improvements over the previous research conducted in this field.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.