Development and deployment of sensing technologies is one of the main steps in achieving sustainability in crop production through precision agriculture. Key sensing methodologies developed for monitoring soil moisture and nutrients with recent advances in the sensing devices reported in literature using those techniques are overviewed in this article. The soil moisture determination has been divided into four main sections describing soil moisture measurement metrics and laboratory-based testing, followed by in-situ, remote and proximal sensing techniques. The application, advantages and limitations for each of the mentioned technologies are discussed. The nutrient monitoring methods are reviewed beginning with laboratory-based methods, ion-selective membrane based sensors, bio-sensors, spectroscopy-based methods, and capillary electrophoresis-based systems for inorganic ion detection. Attention has been given to the core principle of detection while reporting recent sensors developed using the mentioned concepts. The latest works reported on the different sensing methodologies point towards the trend of developing low-cost, easy to use, field-deployable or portable sensing systems aimed towards improving technology adoption in crop production leading to efficient site-specific soil and crop management which in turn will bring us closer to reaching sustainability in the practice of agriculture.
Reducing agricultural losses is an effective way to sustainably increase agricultural output efficiency to meet our present and future needs for food, fiber, fodder, and fuel. Our ever-improving understanding of the ways in which plants respond to stress, biotic and abiotic, has led to the development of innovative sensing technologies for detecting crop stresses/stressors and deploying efficient measures. This article aims to present the current state of the methodologies applied in the field of agriculture towards the detection of biotic stress in crops. Key sensing methodologies for plant pathogen (or phytopathogen), as well as herbivorous insects/pests are presented, where the working principles are described, and key recent works discussed. The detection methods overviewed for phytopathogen-related stress identification include nucleic acid-based methods, immunological methods, imaging-based techniques, spectroscopic methods, phytohormone biosensing methods, monitoring methods for plant volatiles, and active remote sensing technologies. Whereas the pest-related sensing techniques include machine-vision-based methods, pest acoustic-emission sensors, and volatile organic compound-based stress monitoring methods. Additionally, Comparisons have been made between different sensing techniques as well as recently reported works, where the strengths and limitations are identified. Finally, the prospective future directions for monitoring biotic stress in crops are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.