Stearoyl-coenzyme A desaturase-1 (SCD1) has an important role in lipid metabolism, and SCD1 inhibitors are potential therapeutic agents for the treatment of metabolic diseases and cancers. Here we report the 3.25-Å crystal structure of human SCD1 in complex with its substrate, stearoyl-coenzyme A, which defines the new SCD1 dimetal catalytic center and reveals the determinants of substrate binding to provide insights into the catalytic mechanism of desaturation of the stearoyl moiety. The structure also provides a mechanism for localization of SCD1 in the endoplasmic reticulum: human SCD1 folds around a tight hydrophobic core formed from four long α-helices that presumably function as an anchor spanning the endoplasmic reticulum membrane. Furthermore, our results provide a framework for the rational design of pharmacological inhibitors targeting the SCD1 enzyme.
Circular dichroism (CD) data indicated that fd gene 5 protein (G5P) formed complexes with double-stranded poly(dA.dT) and poly[d(A-T).d(A-T)]. CD spectra of both polymers at wavelengths above 255 nm were altered upon protein binding. These spectral changes differed from those caused by strand separation. In addition, the tyrosyl 228-nm CD band of G5P decreased more than 65% upon binding of the protein to these double-stranded polymers. This reduction was significantly greater than that observed for binding to single-stranded poly(dA), poly(dT), and poly[d(A-T)] but was similar to that observed for binding of the protein to double-stranded RNA [Gray, C.W., Page, G.A., & Gray, D.M. (1984) J. Mol. Biol. 175, 553-559]. The decrease in melting temperature caused by the protein was twice as great for poly[d(A-T).d(A-T)] as for poly(dA.dT) in 5 mM tris(hydroxymethyl)aminomethane hydrochloride (Tris-HCl), pH 7. Upon heat denaturation of the poly(dA.dT)-G5P complex, CD spectra showed that single-stranded poly(dA) and poly(dT) formed complexes with the protein. The binding of gene 5 protein lowered the melting temperature of poly(dA.dT) by 10 degrees C in 5 mM Tris-HCl, pH 7, but after reducing the binding to the double-stranded form of the polymer by the addition of 0.1 M Na+, the melting temperature was lowered by approximately 30 degrees C. Since increasing the salt concentration decreases the affinity of G5P for the poly(dA) and poly(dT) single strands and increases the stability of the double-stranded polymer, the ability of the gene 5 protein to destabilize poly(dA.dT) appeared to be significantly affected by its binding to the double-stranded form of the polymer.
Circular dichroism (CD) measurements were made on both fd and IKe gene 5 proteins in solution. The difference between the CD spectra of these two proteins was interpreted as being the result of an enhanced tyrosine contribution in the IKe gene 5 protein spectrum. There was no spectral evidence for significant alpha-helical structures in either of the two gene 5 proteins. CD measurements were also made on complexes of the two gene 5 proteins with poly(rA). The long-wavelength region (300-250 nm) of the CD spectra of both complexes was essentially like that of free poly(rA) at a high temperature. With the assumption that the poly(rA) components of the complexes had the same CD at all wavelengths as did free poly(rA) at a high temperature, it was possible to separate the CD spectra of the complexes into protein and nucleic acid components. Except for the tyrosine CD band at 229 nm, there were no significant changes in the CD bands of either protein upon binding to poly(rA). Thus, each protein appeared to maintain essentially the same overall secondary conformation when complexed with poly(rA) as when in its free state.
Nonrandom chromosomal abnormalities are found in most human malignancies, particularly leukemias and lymphomas. A characteristic t(1; 19) (q23; p13.3) chromosomal translocation is detected in 5% of childhood acute lymphoblastic leukemia (ALL) cases. This translocation results in the formation of a fusion gene, which leads to the expression of an oncogenic E2A/pbx1 protein. Breakpoints in the E2A gene almost invariably occur within a single intron, and the identical portion of PBX1 is joined consistently to exon 13 of E2A in fusion mRNA. In this article, we report the development of monoclonal antibodies against E2A/pbx1 fusion protein using a specific peptide that corresponds to the junction region of the protein. The obtained antibodies recognize specifically the chimeric E2A/pbx1 fusion protein and lack cross-reactivities with E2A and pbx1. Immunohistochemical staining and flow cytometric studies show that these antibodies can distinguish t(1; 19)-positive from t(1; 19)-negative leukemic cells. These results indicate that the obtained E2A/pbx1-specific monoclonal antibodies might prove to be valuable diagnostic reagents and important tools for elucidating the mechanisms involved in oncogenesis and progression of t(1; 19)-positive childhood ALL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.