clinicaltrials.gov Identifier: NCT01045330.
Andrographis paniculata (Burm. f.) Nees (Acanthaceae) is a medicinal plant used in many countries. Its major constituents are diterpenoids, flavonoids and polyphenols. Among the single compounds extracted from A. paniculata, andrographolide is the major one in terms of bioactive properties and abundance. Among the andrographolide analogues, 14-deoxy-11,12-didehydroandrographolide is immunostimulatory, anti-infective and anti-atherosclerotic; neoandrographolide is anti-inflammatory, anti-infective and anti-hepatotoxic; 14-deoxyandrographolide is immunomodulatory and anti-atherosclerotic. Among the less abundant compounds from A. paniculata, andrograpanin is both anti-inflammatory and anti-infective; 14-deoxy-14,15-dehydroandrographolide is antiinflammatory; isoandrographolide, 3,19-isopropylideneandrographolide and 14-acetylandrographolide are tumor suppressive; arabinogalactan proteins are anti-hepatotoxic. The four flavonoids from A. paniculata, namely 7-Omethylwogonin, apigenin, onysilin and 3,4-dicaffeoylquinic acid are anti-atherosclerotic.
Previous studies showed that the ethyl acetate (EtOAc) fraction of Andrographis paniculata (AP) possessed anti-inflammatory activity. This study further isolated these active compounds from bioactivity-guided chromatographic fractionation and identified eight pure compounds. Reporter gene assay indicated that 5-hydroxy-7,8-dimethoxyflavone (1), 5-hydroxy-7,8-dimethoxyflavanone (2), a mix of beta-sitosterol (3a) and stigmasterol (3b), ergosterol peroxide (4), 14-deoxy-14,15-dehydroandrographolide (5), and a new compound, 19-O-acetyl-14-deoxy-11,12-didehydroandrographolide (6a), significantly inhibited the transcriptional activity of NF-kappaB in LPS/IFN-gamma stimulated RAW 264.7 macrophages (P < 0.05). The two most abundant compounds, 14-deoxy-11,12-didehydroandrographolide (7) and andrographolide (8), had less inhibitory activity but exerted greater inhibitory activity by hydrogenation, oxidation, or acetylation to become four derived compounds, 9, 10, 11, and 12. All of the compounds significantly decreased TNF-alpha, IL-6, macrophage inflammatory protein-2 (MIP-2), and nitric oxide (NO) secretions from LPS/IFN-gamma stimulated RAW 264.7 cells. Compounds 5, 11, and 12 exerted the strongest inhibitory effect on NF-kappaB-dependent transactivation in the RAW 264.7 cell, with IC(50) values of 2, 2.2, and 2.4 microg/mL, respectively, providing encouraging results for bioactive compound development.
Interleukin-6 (IL-6) is a multifunctional cytokine that is associated with the disease status and outcomes of gastric cancer. Nonetheless, the underlying mechanism of how IL-6 promotes the spread of gastric cancer is still unclear. In this study, we used a modified Boyden chamber assay to test the invasion ability of different gastric cancer cell lines. Liposome-mediated transfection was used to introduce an IL-6 expression vector into AGS cells, and the transfectants were further examined for the expression of active RhoA and phosphorylated Src using a pull-down assay and coimmunoprecipitation/Western blot analysis. Furthermore, RhoA expression in gastric adenocarcinoma specimens was investigated immunohistochemically. We documented that IL-6 could promote AGS cell motility and invasiveness, and inhibition of RhoA expression by dominant negative RhoA, C3 transferase, or dominant negative Src expressing plasmids could effectively decrease the invasiveness of IL-6 transfectants. We also documented an interaction between active RhoA and phosphorylated-Src following IL-6 treatment. Gastric cancers displaying high expression of RhoA are highly correlated with aggressive lymph node metastasis, more advanced tumor stage, histologically diffuse type and poorer survival. In conclusion, IL-6 induces AGS gastric cancer cell invasion via activation of the c-Src/RhoA/ROCK signaling pathway and RhoA expression could be used as a prognostic factor in patients with gastric adenocarcinoma. ' 2007 Wiley-Liss, Inc.Key words: interleukin-6; Rho-A; Src; Rho-kinase; gastric cancer Gastric cancer is one of the most common malignancies throughout the world, 1 and the incidence rates show substantial variation internationally, with highest rates in Japan, China and eastern Asia.2-4 About 90% of stomach tumors are adenocarcinomas, which can be subdivided into 2 histologic types: (i) well-differentiated or intestinal type adenocarcinoma and (ii) undifferentiated or diffuse-type adenocarcinoma. Infection with Helicobacter pylori, atrophic gastritis and intestinal metaplasia or dysplasia are identified as important steps in the pathogenesis of gastric cancer, 5 but the precise molecular mechanisms of this progression remain largely unknown. Because invasion and lymphatic metastasis is a frequent event in human gastric cancer, partial or complete gastrectomy with lymphadenectomy is the only potentially curative therapy for gastric cancer. Although surgery carries a high cure rate for early stage cancers, the 5-year survival rate for all patients is only about 20%. Death from gastric cancer is mainly due to recurrent disease (40-60% relapse rate in prospective studies), 6,7 where the most common form is loco-regional recurrence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.