We have utilized a computational structure-based approach to identify nonpeptidic small organic compounds that bind to a human leukocyte antigen (HLA) DR1301 molecule (HLA-DR1301 or DR1301) and block the presentation of myelin basic protein peptide 152-165 (MBP 152-165) to T cells. A three-dimensional (3D) structure of DR1301 was derived by homology modeling followed by extensive molecular dynamics simulation for structural refinement. Computational structure-based database searching was performed to identify nonpeptidic small-molecule candidates from the National Cancer Institute (NCI) database containing over 150 000 compounds that can effectively interact with the peptide-binding groove of the HLA molecule. By in vitro testing of 106 candidate small molecules, two lead compounds were confirmed to specifically block IL-2 secretion by DR1301-restricted T cells in a dose-dependent and reversible manner. The specificity of blocking DR1301-restricted MBP presentation was further validated in a binding assay using an analogue of the most potent lead compound. Computational docking was performed to predict the three-dimensional binding model of these confirmed small molecule blockers to the DR1301 molecule and to gain structural insight into their interactions. Our results suggest that computational structure-based searching is an effective approach to discover nonpeptidic small organic compounds to block the interaction between DR1301 and T cells. The nonpeptidic small organic compounds identified in this study are useful pharmacological tools to study the interactions between HLA molecules and T cells and a starting point for the development of a novel therapeutic strategy for the treatment of multiple sclerosis (MS) or other immune-related disorders.
Small-molecule-induced assembly of defined protein structures could have broad implications for the fabrication of new materials as well as biological signaling pathways. However, the design of new host-guest pairs capable of small-molecule-induced assembly in a biologically relevant context remains a significant challenge. Herein, we report a series of miniprotein hosts, evolved from the tenth type III domain of fibronectin (Fn3), that display remarkable binding affinity toward a red-shifted environment-sensitive merocyanine derivative, termed sI-Pht. Importantly, the consensus binder isolated from directed evolution experiments (6.2.18) forms a higher order assembly in response to addition of sI-Pht, as assessed by analytical ultracentrifugation. sI-Pht-induced assembly of 6.2.18 results in a 570-fold increase in fluorescence compared to free dye. This property enables the direct visualization of host-guest assemblies by fluorescence microscopy. As a demonstration, we show that supramolecular assembly of the 6.2.18-sI-Pht system can be visualized on the surface of living yeast cells. This new host-guest pair provides a tool for the potential development of new materials as well as pathway engineering. In a broader context, this work details a new design paradigm for the discovery of host-guest systems that function in the context of living cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.