Background: Hearing loss is one of the most common disabilities in the world and brings a heavy burden to society. The current model is not stable enough, and it has caused serious model interference to clarify the pathogenesis of CHARGE syndrome. Methods: The knockout mouse model of FAM172A gene was constructed, and sits phenotype was identified. Besides, the next-genesequencing experiments of noncoding RNAs were performed utilizing the primary SGNs of model mice. The biofunctions of FAM172A in the relationships between ER (Endoplasmic reticulum) stress, autophagy, and intracellular calcium flux were investigated. Moreover, the above role associated with the competitive combination among LncRNA-DRSGN, miR-27a, and FAM172A were studied in the progression of SGN degeneration and autophagy in the model of CHARGE syndrome. Results: FAM172A(-/-) exhibited abnormal hearing, growth retardation, abnormal eye development, and dysgnosia. It was in line with the phenotype of CHARGE syndrome. Moreover, there was degeneration of SGNs in FAM172A(-/-) mice, and the differential expression of noncoding RNAs in primary SGNs were found and identified, including miR-27a and LncRNA-DRSGN. LncRNA-DRSGN regulated miR-27a as a ceRNA, and miR-27a inhibited FAM172A expression, LncRNA-DRSGN competed with miR-27a for binding to FAM172A, which participated in the regulation of ER stress-related calcium flux. LncRNA-DRSGN regulated the autophagy process of neurons by competing with miR-27a for binding to FAM172A. Conclusion: LncRNA-DRSGN competed with miR-27a for binding to FAM172A, participated in regulating ER stress-related calcium flux, then affected neuron degeneration and autophagy process of SGNs in the model of CHARGE syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.