A hen harrier
Circus cyaneus
(Accipitriformes: Accipitridae), a migrant raptor having a wide breeding range from Europe to Northeast Asia, migrates to more southerly areas (Southern Europe, China, Korea and Japan) in winter. In this study, the complete mitochondrial genome of
C. cyaneus
was completely sequenced and characterized. It was 20,173 bp in length being composed of 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes and two control regions. It has a base composition of A (32.2%), G (12.6%), C (30.5%) and T (24.7%). The phylogenetic tree reconstructed based on the maximum likelihood (ML) method confirms that
C. cyaneus
places within the clade of the family Accipitridae in the monophyletic avian order Accipitriformes.
The chiton Liolophura japonica (Lischke 1873) is distributed in intertidal areas of the northwestern Pacific. Using COI and 16S rRNA, we found three genetic lineages, suggesting separation into three different species. Population genetic analyses, the two distinct COI barcoding gaps albeit one barcoding gap in the 16S rRNA, and phylogenetic relationships with a congeneric species supported this finding. We described L. koreana, sp. nov. over ca. 33°24′ N (JJ), and L. sinensis, sp. nov. around ca. 27°02′–28°00′ N (ZJ). We confirmed that these can be morphologically distinguished by lateral and dorsal black spots on the tegmentum and the shape of spicules on the perinotum. We also discuss species divergence during the Plio-Pleistocene, demographic expansions following the last interglacial age in the Pleistocene, and augmentation of COI haplotype diversity during the Pleistocene. Our study sheds light on the potential for COI in examining marine invertebrate species discrimination and distribution in the northwestern Pacific.
A white-spotted flower chafer Protaetia brevitarsis seulensis widely distributed in Asian countries is traditionally used in oriental medicine. This study explored gene expression abundance with respect to wing development and metamorphosis in P. b. seulensis based on the large-scale RNA-seq data. The transcriptome assembly consists of 23,551 high-quality transcripts which are approximately 96.7% covered. We found 265 wing development genes, 19 metamorphosis genes, and 1,314 candidates. Of the 1,598 genes, 1,594 are included exclusively in cluster 4 with similar gene co-expression patterns. The network centrality analyses showed that wing development- and metamorphosis-related genes have a high degree of betweenness centrality and are expressed most highly in eggs, moderately in pupa and adults, and lowest in larva. This study provides some meaningful clues for elucidating the genetic modulation mechanism of wing development and metamorphosis in P. b. seulensis.
The land snail Ellobium chinense (L. Pfeiffer, 1855) (Eupulmonata, Ellobiida, Ellobiidae), which inhabits the salt marshes along the coastal areas of northwestern Pacific, is an endangered species on the IUCN Red List. Over recent decades, the population size of E. chinense has consistently decreased due to environmental interference caused by natural disasters and human activities. Here, we provide the first assessment of the genetic diversity and population genetic structures of northwestern Pacific E. chinense. The results analyzed with COI and microsatellites revealed that E. chinense population exhibit metapopulation characteristics, retaining under the influence of the Kuroshio warm currents through expansion of the Late-Middle and Late Pleistocene. We also found four phylogenetic groups, regardless of geographical distributions, which were easily distinguishable by four unidirectional and stepwise adenine-to-guanine transitions in COI (sites 207–282–354–420: A–A–A–A, A–A–G–A, G–A–G–A, and G–G–G–G). Additionally, the four COI hotspots were robustly connected with a high degree of covariance between them. We discuss the role of these covariate guanines which link to form four consecutive G-quadruplexes, and their possible beneficial effects under positive selection pressure.
The long-necked woodwasp superfamily Xiphydrioidea belongs to the suborder Symphyta (Hymenoptera). Here we newly characterize the complete mitochondrial genome of the South Korean Euxiphydria potanini (Xiphydriidae) using next-generation sequencing: 16,500 bp long with 84.27% A + T content and 37 typical mitochondrial genes including those encoding 13 PCGs, 2 rRNAs, 22 tRNAs, and one A + T rich region. We compare the patterns of symphytan mitochondrial gene arrangement with those of an ancestral insect form and found some synapomorphic rearrangements in phylogenetic context. We use a variety of nucleotide and amino acid sequence alignments (thirteen mtPCGs and/or eight nDNAs) alongside step-by-step exclusions of long-branched taxa to elucidate the phylogenetic position of Xiphydrioidea and phylogenetic relationships among the seven symphytan superfamilies, except for Anaxyeloidea of which no mtgenome was available. The monophyly of symphytan superfamilies (with weak support for Pamphilioidea), sister-group relationship of Xiphydrioidea and Cephoidea, and Symphyta being paraphyletic to Apocrita, etc. are consistently supported by maximum likelihood and Bayesian inference trees. We also discuss the problematic phylogenetic positions of Orussoidea and Siricoidea and propose a hypothetical scenario of morphological character transition during hymenopteran evolution based on morphological key characteristics, such as the cenchrus and the wasp-waist.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.