The development of transparent radio-frequency electronics has been limited, until recently, by the lack of suitable materials. Naturally thin and transparent graphene may lead to disruptive innovations in such applications. Here, we realize optically transparent broadband absorbers operating in the millimetre wave regime achieved by stacking graphene bearing quartz substrates on a ground plate. Broadband absorption is a result of mutually coupled Fabry-Perot resonators represented by each graphene-quartz substrate. An analytical model has been developed to predict the absorption performance and the angular dependence of the absorber. Using a repeated transfer-and-etch process, multilayer graphene was processed to control its surface resistivity. Millimetre wave reflectometer measurements of the stacked graphene-quartz absorbers demonstrated excellent broadband absorption of 90% with a 28% fractional bandwidth from 125–165 GHz. Our data suggests that the absorbers' operation can also be extended to microwave and low-terahertz bands with negligible loss in performance.
Numerous studies have been made to design switchable terahertz absorber for the application of amplitude modulator. However, it is still a challenge to achieve large modulation range while maintaining broad bandwidth. Here, we propose a switchable broadband absorber/reflector in the low-terahertz regime. By utilizing a hybrid graphene-gold metasurface on SiO2/pSi/PDMS substrate with an aluminum back, an excellent absorption across 0.53-1.05 THz with a wide incident angles for both TE and TM polarizations is achieved. By controlling the voltage across gold electrode and pSi, the chemical potential of graphene can be changed correspondingly. When the chemical potential of graphene varied from 0eV to 0.3eV, the state of the proposed structure can be switched from absorption (>90%) to reflection (>82%) over the whole operation bandwidth. Electric field intensity and surface loss density of the proposed absorber under different chemical potential are given to have a physical insight of the mechanisms. The switchable absorber/reflector can enable a wide application of high performance terahertz devices, such as active camouflage, imaging, modulators and electro-optic switches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.