Landfill leachates are pollutants rich in ammoniacal N, Na, and K, but land application potentially offers an alternative for recycling these leachate nutrients. We applied landfill leachate corresponding to 0, 110, 220, 330, and 440 kg ha of total N, divided in three applications (July, August, and October 2008), onto the surface of an acidic (pH 5.5-6.0) clay (79% clay) Ultisol and monitored NH volatilization just after applications and microbiological (0-10 cm) and chemical attributes (0-60-cm soil depth) in August 2008, January 2009, and May 2009. Ammonium (up to 30 mg kg), NO (up to 160 mg kg), Na, K (up to 1.1 cmol kg each), and electrical conductivity (up to 1 dS m) increased transiently in soil following applications. Despite >90% of the total leachate N being ammoniacal, NO predominated in the first soil sampling, 14 d after the second application, suggesting fast nitrification, but it decreased in the soil profile thereafter. From 5 to 25% of the total applied N volatilized as NH, with maximum losses within the first 3 d. Applications inhibited (50%) the relative nitrification rate and increased (50%) hot-water-soluble carbohydrates in the soil at the highest rate. No effects were observed on soil microbial biomass C (114-205 mg kg) and activity (5-8 mg CO-C kg d) or on corn grain yields (6349-7233 kg ha). Controlled land application seems to be a viable alternative for landfill leachate management, but NO leaching, NH volatilization, and accumulation of salinizing ions must be monitored in the long term to prevent environmental degradation.
SUMMARYSustainable use of soil, maintaining or improving its quality, is one of the goals of diversification in farmlands. From this point of view, bioindicators associated with C, N and P cycling can be used in assessments of land-use effects on soil quality. The aim of this study was to investigate chemical, microbiological and biochemical properties of soil associated with C, N and P under different land uses in a farm property with diversified activity in northern Parana, Brazil. Seven areas under different land uses were assessed: fragment of native Atlantic Forest; growing of peach-palm (Bactrys gasipaes); sugarcane ratoon (Saccharum officinarum) recently harvested, under renewal; growing of coffee (Coffea arabica) intercropped with tree species; recent reforestation (1 year) with native tree species, previously under annual crops; annual crops under no-tillage, rye (Cecale cereale); secondary forest, regenerated after abandonment (for 20 years) of an avocado (Persea americana) orchard. The soil under coffee, recent reforestation and secondary forest showed higher concentrations of organic carbon, but microbial biomass and enzyme activities were higher in soils under native forest and secondary forest, which also showed the lowest metabolic coefficient, followed by the peach-palm area. The lowest content of water-dispersible clay was found in the soil under native forest, differing from soils under sugarcane and secondary forest. Soil cover and soil use affected total organic C contents and soil enzyme and microbial activities, such that more intensive agricultural uses had deeper impacts on the indicators assessed. Calculation of the mean soil quality index showed that the secondary forest was closest to the fragment of native forest, followed by the peach-palm area, coffee-growing area, annual crop area, the area of recent reforestation and the sugarcane ratoon area.Index terms: bioindicators, land use, metabolic coefficient, microbial biomass, soil enzymes, soil quality. RESUMO: INDICADORES DE QUALIDADE EM UM NITOSSOLO SOB DIFERENTES USOS NO NORTE DO PARANÁO uso sustentável do solo, mantendo ou aumentando sua qualidade, é um dos objetivos da diversificação na propriedade agrícola. Nesse aspecto, bioindicadores relacionados à ciclagem de C, N e P podem ser utilizados na avaliação do tipo de uso na qualidade do solo. O objetivo deste trabalho foi avaliar atributos químicos, microbiológicos e bioquímicos do solo, associados ao C, N e P, sob diferentes tipos de uso em uma propriedade agrícola com atividade diversificada no norte do Paraná. Foram avaliados sete tipos de uso do solo: fragmento nativo de Floresta Atlântica; cultivo de pupunha (Bactrys gasipaes); soqueira de cana-de-açúcar (Saccharum officinarum) recém colhida, em reforma; cultivo de café (Coffea arabica) intercalado com espécies arbóreas; reflorestamento recente (1 ano) com espécies arbóreas nativas, em área anteriormente ocupada com culturas anuais; cultivos anuais em sistema de plantio direto na palha, centeio (Cecale cereale); e mata secun...
Landfill leachates carry nutrients, especially N and K, which can be recycled in cropping systems. We applied doses of landfill leachate (0 [Control], 32.7, 65.4, 98.1, and 130.8 m ha) three times in 2008 and three times in 2009 on a clay Rhodic Kandiudult soil. In 2009, black oat ( L.) and corn ( L.) were cropped in succession and assessed for concentration of nutrients in leaves and for shoot biomass and grain yield, respectively. As a positive control, an additional treatment with urea (120 kg ha of N) was studied in corn. Soil was sampled at four depths (down to 60 cm) in three sampling dates to assess chemical and biochemical properties. Concentration of nutrients in leaves, oat biomass (8530-23,240 kg ha), and corn grain yield (4703-8807 kg ha) increased with increasing doses of leachate. There was a transient increase in the concentration of nitrate in soil (3-30 mg kg), increasing the risk of N losses by leaching at doses above 120 kg ha N, as revealed by an estimated N balance in the cropping system. Sodium and K in soil also increased with increasing doses of leachate but decreased as rainfall occurred. The activity of dehydrogenase decreased about 30% from the control to the highest dose of leachate and urea, suggesting an inhibitory effect of mineral N on microbial metabolism. Landfill leachate was promising as a source of N and K for crop productivity and caused minor or transient effects on soil properties.
We evaluated the effect of three different Bradyrhizobium strains inoculated in two soybean genotypes (R01-581F, droughttolerant, and NA5858RR, drought-sensitive) submitted to drought in two trials conducted simultaneously under greenhouse. The strains (SEMIA 587, SEMIA 5019 (both B. elkanii), and SEMIA 5080 (B. diazoefficiens)) were inoculated individually in each genotype and then submitted to water restriction (or kept well-watered, control) between 45 and 62 days after emergence. No deep changes in plant physiological variables were observed under the moderate water restriction imposed during the first 10 days. Nevertheless, photosynthesis and transpiration decreased after the severe water restriction imposed for further 7 days. Water restriction reduced growth (− 30%) and the number of nodules (− 47% and − 58% for R01-581F and NA5858RR, respectively) of both genotypes, with a negative effect on N-metabolism. The genotype R01-581F inoculated with SEMIA 5019 strain had higher photosynthetic rates compared with NA5858RR, regardless of the Bradyrhizobium strain. On average, R01-581F showed better performance under drought than NA5858RR, with higher number of nodules (51 vs. 38 nodules per plant, respectively) and less accumulation of ureides in petioles (15 μmol g −1 vs. 34 μmol g −1 , respectively). Moreover, plants inoculated with SEMIA 5080 had higher glutamine synthetase activity under severe water restriction, especially in the droughttolerant R01-518F, suggesting maintenance of N metabolism under drought. The Bradyrhizobium strain affects the host plant responses to drought in which the strain SEMIA 5080 improves the drought tolerance of R01-518F genotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.