Colorectal cancer (CRC) is one of the most common malignant carcinomas in the world, and metastasis is the main cause of CRC-related death. However, the molecular network involved in CRC metastasis remains poorly understood. Long noncoding RNA (lncRNA) plays a vital role in tumorigenesis and may act as a competing endogenous RNA (ceRNA) to affect the expression of mRNA by suppressing miRNA function. In this study, we identified 628 mRNAs, 144 lncRNAs, and 25 miRNAs that are differentially expressed (DE) in metastatic CRC patients compared with nonmetastatic CRC patients from the Cancer Genome Atlas (TCGA) database. Functional enrichment analyses confirmed that the identified DE mRNAs are extensively involved in CRC tumorigenesis and migration. By bioinformatics analysis, we constructed a metastasis-associated ceRNA network for CRC that includes 28 mRNAs, 12 lncRNAs, and 15 miRNAs. We then performed multivariate Cox regression analysis on the ceRNA-related DE lncRNAs and identified a 3-lncRNA signature (LINC00114, LINC00261, and HOTAIR) with the greatest prognostic value for CRC. Clinical feature analysis and functional enrichment analysis further proved that these three lncRNAs are involved in CRC tumorigenesis. Finally, we used Transwell, Cell Counting Kit (CCK)-8, and colony formation assays to clarify that the inhibition of LINC00114 promotes the migratory, invasive, and proliferative abilities of CRC cells. The results of the luciferase assay suggest that LINC00114 is the direct target of miR-135a, which also verified the ceRNA network. In summary, this study provides a metastasis-associated ceRNA network for CRC and suggests that the 3-lncRNA signature may be a useful candidate for the diagnosis and prognosis of CRC.
Aberrant loss of tumor-suppressor genes plays a crucial role in tumorigenesis and development of colorectal cancer (CRC). Extensive studies have reported tha hypermethylation of Ras association domain family member 6 (RASSF6) is common in various solid tumors. Another important mode of epigenetic regulation, microRNA (miRNA) regulation of RASSF6, is far from clear. The aim of the present work was to screen out novel miRNA regulating RASSF6, and to explore its underlying mechanism in CRC. With the use of bioinformatics, clinical sample data, and luciferase binding assay, we determined that microRNA-496 (miR-496) could be a novel oncomiR that directly binds to RASSF6. Next, a series of miR-496 mimics or inhibitor, or RASSF6 small interfering RNA (siRNA) introduced into CRC cells were applied to examine the effect of miR-496 on CRC cell viability, migration, and epithelial-mesenchymal transition (EMT). The results demonstrated that miR-496/RASSF6 could promote cell migration and EMT via Wnt signaling activation, but had no effect on cell viability.Our results confirmed that the miR-496/RASSF6 axis is involved in Wnt pathwaymediated tumor metastasis, highlighting its potential as a therapeutic target for CRC. K E Y W O R D S colorectal cancer, epithelial-mesenchymal transition, microRNA-496, migration, Wnt signaling pathway
Background: Lung cancer is the most common cancer worldwide, and metastasis is the leading cause of lung cancer related death. However, the molecular network involved in lung cancer metastasis remains incompletely described. Here, we aimed to construct a metastasis-associated ceRNA network and identify a lncRNA prognostic signature in lung cancer. Methods: RNA expression profiles were downloaded from The Cancer Genome Atlas (TCGA) database. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses and gene set enrichment analysis (GSEA) were performed to investigate the function of these genes. Using Cox regression analysis, we found that a 6 lncRNA signature may serve as a candidate prognostic factor in lung cancer. Finally, we used Transwell assays with lung cancer cell lines to verify that LINC01010 acts as a tumor suppressor. Results: We identified 1249 differentially expressed (DE) mRNAs, 440 DE lncRNAs and 26 DE miRNAs between nonmetastatic and metastatic lung cancer tissues. GO and KEGG analyses confirmed that the identified DE mRNAs are involved in lung cancer metastasis. Using bioinformatics tools, we constructed a metastasis-associated ceRNA network for lung cancer that includes 117 mRNAs, 23 lncRNAs and 22 miRNAs. We then identified a 6 lncRNA signature (LINC01287, SNAP25-AS1, LINC00470, AC104809.2, LINC00645 and LINC01010) that had the greatest prognostic value for lung cancer. Furthermore, we found that suppression of LINC01010 promoted lung cancer cell migration and invasion. Conclusions: This study might provide insight into the identification of potential lncRNA biomarkers for diagnosis and prognosis in lung cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.