In this study, a local natural clay material was used for the efficient removal of Pb(II)ions and Hg(II) ions from aqueous media, in batch system. The adsorptive potential of clay material was testes at different initial solution pH, adsorbent dosage, contact time and initial heavy metal ions concentration and room temperature (20 2C). The highest adsorption efficiency of clay material was found at initial pH of 7.0 in case of Pb(II) ions, and 2.0 in case of Hg(II) ions, while the adsorbent dosage had the same value (4 g/L) for both metal ions. The adsorption equilibrium is very fast and was reach within 10 min. The modelling of experimental data showed that the adsorption processes followed the Freundlich isotherm model and pseudo-second order kinetic model. Detailed analysis of the experimental data indicate that the retention of Pb(II) and Hg(II) ions from aqueous solution on clay materials involves two processes, one of adsorption and the other of precipitation, whose succession depends on the speciation form of the metal ion in aqueous solution. However, the high adsorption capacity and short contact time are important characteristics which suggest the potential use of this clay material in environmental remediation processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.