In this study, we show that hydrophilic nanoparticles can readily desorb from liquid−liquid interfaces in the presence of surfactants that do not change the wettability of the particles. Our observations are based on a simple theoretical approach to assess the number of adsorbed particles at the surfactant-laden liquid−liquid interface. We test this approach by studying the interfacial self-assembly of equally charged particles and lipids dissolved in separate immiscible phases. Hence, we investigate the interfacial adsorption of aminated silica particles (80 nm) and octadecylamine to the decane/water interface by interfacial tension measurements, which are supplemented by interfacial rheology of the adsorbed interfacial films, scanning electron microscopy images of Langmuir−Blodgett films, and measurements of the three-phase contact angle of the particle surface in the presence of surfactants. The measurements show that particles adsorb at the surfactant-laden interface at all investigated surfactant concentrations and compete with the surfactants for interfacial coverage. Additionally, the wettability of the hydrophilic particles does not change in the presence of the lipids, except for the highest investigated lipid concentration. Comparing the adsorption energies of one particle and of the lipids as a function of the particle contact angle provides an estimate of the tendency for interfacial adsorption of particles from which the particle coverage can be assessed. Based on these findings, equally charged particles and lipids show a competitive behavior at the interface determined by the bulk surfactant concentration and the attachment energies of the particles at the interface. This leads to a simple mechanistic model demonstrating that particles can readily desorb from the interface due to direct displacement by surfactants, which are loosely adsorbed at the oil-facing particle side. This mechanism critically lowers the otherwise high interfacial energy barrier against particle desorption, which otherwise would lead to virtually irreversible particle attachment at the interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.