Fibroblasts are abundantly present in the prostate tumor microenvironment (TME), including cancer‐associated fibroblasts (CAFs) which play a key role in cancer development. Androgen receptor (AR) signaling is the main driver of prostate cancer (PCa) progression, and stromal cells in the TME also express AR. High‐grade tumor and poor clinical outcome are associated with low AR expression in the TME, which suggests a protective role of AR signaling in the stroma against PCa development. However, the mechanism of this relation is not clear. In this study, we isolated AR‐expressing CAF‐like cells. Testosterone (R1881) exposure did not affect CAF‐like cell morphology, proliferation, or motility. PCa cell growth was not affected by culturing in medium from R1881‐exposed CAF‐like cells; however, migration of PCa cells was inhibited. AR chromatin immune precipitation sequencing (ChIP‐seq) was performed and motif search suggested that AR in CAF‐like cells bound the chromatin through AP‐1‐elements upon R1881 exposure, inducing enhancer‐mediated AR chromatin interactions. The vast majority of chromatin binding sites in CAF‐like cells were unique and not shared with AR sites observed in PCa cell lines or tumors. AR signaling in CAF‐like cells decreased expression of multiple cytokines; most notably CCL2 and CXCL8 and both cytokines increased migration of PCa cells. These results suggest direct paracrine regulation of PCa cell migration by CAFs through AR signaling.
The androgen receptor (AR) is the master regulator of prostate cancer (PCa) development, and inhibition of AR signalling is the most effective PCa treatment. AR is expressed in PCa cells and also in the PCa-associated stroma, including infiltrating macrophages. Macrophages have a decisive function in PCa initiation and progression, but the role of AR in macrophages remains largely unexplored. Here, we show that AR signalling in the macrophage-like THP-1 cell line supports PCa cell line migration and invasion in culture via increased Triggering Receptor Expressed on Myeloid cells-1 (TREM-1) signalling and expression of its downstream cytokines. Moreover, AR signalling in THP-1 and monocyte-derived macrophages upregulates IL-10 and markers of tissue residency. In conclusion, our data suggest that AR signalling in macrophages may support PCa invasiveness, and blocking this process may constitute one mechanism of anti-androgen therapy.
Background Human papillomavirus (HPV)‐positive oropharyngeal squamous cell carcinoma (OPSCC) is a highly immunogenic tumor and differences in tumor microenvironment might contribute to the improved survival of HPV‐positive OPSCC patient. Methods A comprehensive multivariate analysis with clinical and immune variables (human leukocyte antigen [HLA] I/II, programmed death ligand 1 (PD‐L1), programmed death receptor 1 (PD1), T cells, and macrophages) was performed in 142 OPSCC patients. Results We found an inverse correlation between the expression of HLA class II molecules on tumor cells and CD68+ CD163+ tumor‐associated macrophages (TAMs). High HLA‐DP/DQ/DR expression and low number of TAMs were associated with longer disease‐specific survival and disease‐free survival (DFS). Furthermore, a new population of CD8+ FoxP3+ T cells was correlated with shorter DFS in multivariate analysis. Conclusions \We identified new prognostic markers for patients with oropharyngeal cancer, which can be used for selecting patients that can benefit from immunotherapy.
Androgen receptor (AR) signaling is vital for the normal development of the prostate and is critically involved in prostate cancer (PCa). AR is not only found in epithelial prostate cells but is also expressed in various cells in the PCa-associated stroma, which constitute the tumor microenvironment (TME). In the TME, AR is expressed in fibroblasts, macrophages, lymphocytes and neutrophils. AR expression in the TME was shown to be decreased in higher-grade and metastatic PCa, suggesting that stromal AR plays a protective role against PCa progression. With that, the functionality of AR in stromal cells appears to deviate from the receptor's classical function as described in PCa cells. However, the biological action of AR in these cells and its effect on cancer progression remains to be fully understood. Here, we systematically review the pathological, genomic and biological literature on AR actions in various subsets of prostate stromal cells and aim to better understand the consequences of AR signaling in the TME in relation to PCa development and progression.
Macrophages in the tumor microenvironment are causally linked with prostate cancer development and progression, yet little is known about their composition in neoplastic human tissue. By performing single cell transcriptomic analysis of human prostate cancer resident macrophages, three distinct populations were identified in the diseased prostate. Unexpectedly, no differences were observed between macrophages isolated from the tumorous and non-tumorous portions of the prostatectomy specimens. Markers associated with canonical M1 and M2 macrophage phenotypes were identifiable, however these were not the main factors defining unique subtypes. The genes selectively associated with each macrophage cluster were used to develop a gene signature which was highly associated with both recurrence-free and metastasis-free survival. These results highlight the relevance of tissue-specific macrophage subtypes in the tumour microenvironment for prostate cancer progression and demonstrates the utility of profiling single-cell transcriptomics in human tumor samples as a strategy to design gene classifiers for patient prognostication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.