The Po River Basin, where accumulation and preservation of thick sedimentary packages are enhanced by high rates of tectonic subsidence, represents an ideal site to assess the relations between vertical changes in stratigraphic architecture and sediment accumulation rates. Based on a large stratigraphic database, a markedly contrasting stratigraphy of Late Pleistocene and Holocene deposits is reconstructed from the subsurface of the modern alluvial and coastal plains. Laterally extensive fluvial channel bodies and related pedogenically modified muds of latest Pleistocene age are unconformably overlain by Holocene overbank fines, grading seaward into paralic and nearshore facies associations. In the interfluvial areas, a stiff paleosol, dating at about 12.5-10 cal ky BP, marks the Pleistocene-Holocene boundary. Across this paleosol, aggradation rates (ARs) from 16 radiocarbondated cores invariably show a sharp increase, from 0.1-0.9 mm year À1 to 0.9-2.9 mm year À1 . Comparatively lower Pleistocene values are inferred to reflect fluvial activity under a low-accommodation (lowstand and early transgressive) regime, whereas higher ARs during the Holocene are related to increasing accommodation under late transgressive and highstand conditions. Holocene sediment accumulation patterns vary significantly from site to site, and do not exhibit common trends. Very high accumulation rates (20-60 mm year À1 ) are indicated by fluvial channel or progradational delta facies, suggesting that extremely variable spatial distribution of Holocene ARs was primarily controlled by autogenic processes, such as fluvial channel avulsion or delta lobe switching. Contrasting AR between uppermost Pleistocene and Holocene deposits also are reported from the interfluves of several coeval, alluvial-coastal plain systems worldwide, suggesting a key control by allogenic processes. Sediment accumulation curves from adjacent incised valley fills show, instead, variable shapes as a function of the complex mechanisms of valley formation and filling.
Though clinothem geometry represents a key control on fluid flow in reservoir modelling, tracing clinothem boundaries accurately is commonly limited by the lack of sufficiently precise outcrop or subsurface data. This study shows that in basin systems with strongly heterogeneous compositional signatures, the combination of bulk‐sediment geochemistry and benthic foraminiferal distribution can help identify clinothem architecture and generate realistic models of 3D deltaic upbuilding and evolution. Middle‐late Holocene deposits in the Po Delta area form an aggradational to progradational parasequence set that reveals the complex interaction of W–E Po Delta progradation, S‐directed longshore currents (from Alpine rivers) and Apennines rivers supply. Unique catchment lithologies (ophiolite rocks and dolostones) were used to delineate basin‐wide geochemical markers of sediment provenance (Cr and Mg) and to assess distinctive detrital signatures. The geochemical characterization of cored intervals across different components of the sediment routing system enabled a direct linkage between clinothem growth, transport pathways and provenance mixing to be established. On the other hand, abrupt microfaunal variations at clinothem boundaries were observed to reflect the palaeoenvironmental response to sharp changes in sediment flux and fluvial influence. This study documents the ability of an integrated geochemical and palaeoecological approach to delineate three distinct sources (Po, Alps and Apennines) that contributed to coastal progradation and to outline the otherwise lithologically cryptic geometries of clinothems that using conventional sedimentological methods it would be virtually impossible to restore.
Despite increased application of subsurface datasets below the limits of seismic resolution, reconstructing near-surface deformation of shallow key stratigraphic markers beneath modern alluvial and coastal plains through sediment core analysis has received little attention. Highly resolved stratigraphy of Upper Pleistocene to Holocene (Marine Isotope Stage 5e to Marine Isotope Stage 1) alluvial, deltaic and coastal depositional systems across the southern Po Plain, down to 150 m depth, provides an unambiguous documentation on the deformation of previously flat-lying strata that goes back in time beyond the limits of morphological, historical and palaeoseismic records. Five prominent key horizons, accurately selected on the basis of their sedimentological characteristics and typified for their fossil content, were used as highly effective stratigraphic markers (M1 to M5) that can be tracked for tens of kilometres across the basin. A facies-controlled approach tied to a robust chronology (102 radiocarbon dates) reveals considerable deformation of laterally extensive nearshore (M1), continental (M2 and M3) and lagoon (M4 and M5) marker beds originally deposited in a horizontal position (M1, M4 and M5). The areas where antiformal geometries are best observed are remarkably coincident with the axes of buried ramp anticlines, across which new seismic images reveal substantially warped stratal geometries of Lower Pleistocene strata. The striking spatial coincidence of fold crests with the epicentres of historic and instrumental seismicity suggests that deformation of marker beds M1 to M5 might reflect, in part at least, syntectonically generated relief and, thus, active tectonism. Precise identification and lateral tracing of chronologically constrained stratigraphic markers in the 14 C time window through combined sedimentological and palaeoecological data may delineate late Quaternary subsurface stratigraphic architecture at an unprecedented level of detail, outlining cryptic stratal geometries at the sub-seismic scale. This approach is highly reproducible in tectonically active Quaternary depositional systems and can help to assess patterns of active deformation in the subsurface of modern alluvial and coastal plains worldwide.
Abstract. Understanding the causes and mechanisms of land subsidence is crucial, especially in densely populated coastal plains. In this work, we calculated subsidence rates (SR) in the Po coastal plain, averaged over the last 5.6 and 120 kyr, providing information about land movements on intermediate (103–105 years) time scales. The calculation of SR relied upon core-based correlation of two lagoon horizons over tens of km. Subsidence in the last 120 kyr appears to be controlled mainly by the location of buried tectonic structures, which in turn controlled sedimentation rates and location of highly compressible depositional facies. Numerical modelling shows that subsidence in the last 5.6 kyr is mainly due to compaction of the Late Pleistocene and Holocene deposits (uppermost 30 m).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.