The primary benefit of using sulfites as a food additive is their antimicrobial and antioxidant properties, which stop fungi and bacteria from growing in a variety of foods. The application of analytical methods is necessary to ensure food quality control related to the presence of sulfites in a variety of foods. For the detection of sodium metabisulfite in food and urine samples, two sensors based on reduced graphene oxide doped with Pd paste and modified with 5,10,15,20-tetraphenyl-21H,23H-porphyrin and 5,10,15,20-tetrakis (pentafluorophenyl chloride)-21H,23H-iron (III) porphyrin were proposed. The new sensors were evaluated and characterized using square wave voltammetry. The response characteristics showed that the detection limits for the sensors were 3.0 × 10−12 mol L−1 for TPP/rGO@Pd0 based sensors and 3.0 × 10−11 mol L−1 for Fe(TPFPP)Cl/rGO@Pd0 based sensors while the quantification limits were 1.0 × 10−11 mol L−1 for TPP/rGO@Pd0 based sensors and 1.0 × 10−10 mol L−1 for Fe(TPFPP)Cl/rGO@Pd0 based sensors. The sensors can be used to determine sodium metabisulfite in a concentration range between 1.0 × 10−11 and 1.0 × 10−7 mol L−1 for TPP/rGO@Pd0 based sensors and between 1.0 × 10−10 mol L−1 and 1.0 × 10−6 mol L−1 for Fe(TPFPP)Cl/rGO@Pd0 based sensors. A comparison between the proposed methods’ results and other analytical applications is also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.