Visually impaired children showed higher crowding ratios than normally sighted children when measured with charts with fixed ISS. This study illustrates that test design and target/flanker interference as a manifestation of crowding are critical issues to bear in mind when assessing crowding ratios in children.
BackgroundThe inclusion for rehabilitation of visually impaired children is partly based on the measurement of near vision, but guidelines for near visual acuity assessment are currently lacking. The twofold purpose of this systematic review was to: (i) provide an overview of the impact of the chart design on near visual acuity measured, and (ii) determine the method of choice for near vision assessments in children of different developmental ages.MethodsA literature search was conducted by using the following electronic databases: PubMed, Cochrane Library, and EMBASE. The last search was run on March 26th 2016. Additional studies were identified by contacting experts and searching for relevant articles in reference lists of included studies. Search terms were: vision test(s), vision assessment(s), visual acuity, chart(s) and near.ResultsFor children aged 0–3 years the golden standard is still the preferential looking procedure. Norms are available for this procedure for 6–36 month old children. For 4–7 year olds, we recommend using the LEA symbols, because these symbols have been properly validated and can be used in preliterate children. Responses can be verbal or by matching the target symbol. In children aged 8–13 years, the recommended method is the ETDRS letter chart, because letter acuity is more predictive for functional vision and reading than symbol acuity. In 8–13 year olds, letter acuity is 0.1–0.2 logMAR poorer than symbol acuity.ConclusionsChart design, viewing distance, and threshold choice have a serious impact on near visual acuity measurements. Near visual acuity measured with symbols is lower than near visual acuity measured with gratings, and near visual acuity measured with letters is lower than near visual acuity measured with symbols. Viewing distance, chart used, and letter spacing should be adapted to the child’s development and reported in order to allow comparisons between measurements.
Children with visual impairment benefit from perceptual training. While task-specific improvements were observed in all training groups, transfer to crowded NVA was largest in the crowded perceptual learning group. To our knowledge, this is the first study to provide evidence for the improvement of NVA by perceptual learning in children with visual impairment. (http://www.trialregister.nl number, NTR2537.).
PURPOSE. Perceptual learning improves visual acuity and reduces crowding in children with infantile nystagmus (IN). Here, we compare reading performance of 6-to 11-year-old children with IN with normal controls, and evaluate whether perceptual learning improves their reading. METHODS.Children with IN were divided in two training groups: a crowded training group (n ¼ 18; albinism: n ¼ 8; idiopathic IN: n ¼ 10) and an uncrowded training group (n ¼ 17; albinism: n ¼ 9; idiopathic IN: n ¼ 8). Also 11 children with normal vision participated. Outcome measures were: reading acuity (the smallest readable font size), maximum reading speed, critical print size (font size below which reading is suboptimal), and acuity reserve (difference between reading acuity and critical print size). We used multiple regression analyses to test if these reading parameters were related to the children's uncrowded distance acuity and/or crowding scores.RESULTS. Reading acuity and critical print size were 0.65 6 0.04 and 0.69 6 0.08 log units larger for children with IN than for children with normal vision. Maximum reading speed and acuity reserve did not differ between these groups. After training, reading acuity improved by 0.12 6 0.02 logMAR and critical print size improved by 0.11 6 0.04 logMAR in both IN training groups. The changes in reading acuity, critical print size, and acuity reserve of children with IN were tightly related to changes in their uncrowded distance acuity and the changes in magnitude and extent of crowding.CONCLUSIONS. Our findings are the first to show that visual acuity is not the only factor that restricts reading in children with IN, but that crowding also limits their reading performance. By targeting both of these spatial bottlenecks in children with IN, our perceptual learning paradigms significantly improved their reading acuity and critical print size. This shows that perceptual learning can effectively transfer to reading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.