Background/Aims: Reduced oxygen availability, hypoxia, is frequently encountered by organisms, tissues and cells, in aquatic environments as well as in high altitude or under pathological conditions such as infarct, stroke or cancer. The hypoxic signaling pathway was found to be mutually intertwined with circadian timekeeping in vertebrates and, as reported recently, also in mammals. However, the impact of hypoxia on intracellular metabolic oscillations is still unknown. Methods: For determination of metabolites we used Multilabel Reader based fluorescence and luminescence assays, circadian levels of Hypoxia Inducible Factor 1 alpha and oxidized peroxiredoxins were semi quantified by Western blotting and ratiometric quantification of cytosolic and mitochondrial H2O2 was achieved with stable transfections of a redox sensitive green fluorescent protein sensor into zebrafish fibroblasts. Circadian oscillations of core clock gene mRNA´s were assessed using realtime qPCR with subsequent cosine wave fit analysis. Results: Here we show that under normoxia primary metabolic activity of cells predominately occurs during day time and that after acute hypoxia of two hours, administrated immediately before each sampling point, steady state concentrations of glycolytic key metabolites such as glucose and lactate reveal to be highly rhythmic, following a circadian pattern with highest levels during the night periods and reflecting the circadian variation of the cellular response to hypoxia. Remarkably, rhythms in glycolysis are transferred to cellular energy states under normoxic conditions, so that ADP/ATP ratios oscillate as well, which is the first evidence for cycling ADP/ATP pools in a metazoan cell line to our knowledge. Furthermore, the hypoxia induced alterations in rhythms of glycolysis lead to the alignment of three major cellular redox systems, namely the circadian oscillations of NAD+/NADH and NADP+/NADPH ratios and of increased nocturnal levels of oxidized peroxiredoxins, resulting in a highly oxidized nocturnal cellular environment. Of note, circadian rhythms of cytosolic H2O2 remain unaltered, while the transcriptional clock is already attenuated, as it is known to occur also under chronic hypoxia. Conclusion: We therefor propose that the realignment of metabolic redox oscillations might initiate the observed hypoxia induced attenuation of the transcriptional clock, based on the reduced binding affinity of the CLOCK/BMAL complex to the DNA in an oxidized environment.
Nuclear magnetic resonance (NMR) is used for magnetic resonance imaging and, at a lower intensity, as therapy for the treatment of musculoskeletal disorders. Due to the involvement of the circadian clock protein CRYPTOCHROME in the magnetic orientation of animals, it was repeatedly assumed that magnetic fields might affect the circadian rhythm of cells and organisms. Since circadian time keeping and hypoxic signaling are mutually intertwined, we investigated the effects of NMR on both cellular pathways in zebrafish fibroblast cells and larvae. In cells, basal mRNA expression of cryptochrome1aa was increased and oscillations of crypto-chrome1aa and period1b were shifted in phase, while those of clock1a and period2 remained unaffected. Similarly, circadian oscillations of cryptochrome1aa and period1b were restored in zebrafish larvae, while those of clock1a and period2 remained unaltered. NMR also restored the circadian expression of the hypoxia-inducible factor (Hif) isoforms Hif-1α and Hif-3α at the mRNA and protein level, but had no effect on the expression of Hif-2α. Thus, NMRmediated effects might differ substantially from the light-induced reset of the circadian clock in the same species and therefore represent an additional operation mode of the cellular clock, enabling distinct processing of photic and magnetic information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.