Alzheimer’s disease is characterized by accumulation of amyloid plaques and tau aggregates in several cortical brain regions. Tau phosphorylation causes formation of neurofibrillary tangles and neuropil threads. Phosphorylation at tau Ser202/Thr205 is well characterized since labeling of this site is used to assign Braak stage based on occurrence of neurofibrillary tangles. Only little is known about the spatial and temporal phosphorylation profile of other phosphorylated tau (ptau) sites. Here, we investigate total tau and ptau at residues Tyr18, Ser199, Ser202/Thr205, Thr231, Ser262, Ser396, Ser422 as well as amyloid-β plaques in human brain tissue of AD patients and controls. Allo- and isocortical brain regions were evaluated applying rater-independent automated quantification based on digital image analysis. We found that the level of ptau at several residues, like Ser199, Ser202/Thr205, and Ser422 was similar in healthy controls and Braak stages I to IV but was increased in Braak stage V/VI throughout the entire isocortex and transentorhinal cortex. Quantification of ThioS-stained plaques showed a similar pattern. Only tau phosphorylation at Tyr18 and Thr231 was already significantly increased in the transentorhinal region at Braak stage III/IV and hence showed a progressive increase with increasing Braak stages. Additionally, the increase in phosphorylation relative to controls was highest at Tyr18, Thr231 and Ser199. By contrast, Ser396 tau and Ser262 tau showed only a weak phosphorylation in all analyzed brain regions and only minor progression. Our results suggest that the ptau burden in the isocortex is comparable between all analyzed ptau sites when using a quantitative approach while levels of ptau at Tyr18 or Thr231 in the transentorhinal region are different between all Braak stages. Hence these sites could be crucial in the pathogenesis of AD already at early stages and therefore represent putative novel therapeutic targets.Electronic supplementary materialThe online version of this article (10.1186/s40478-018-0557-6) contains supplementary material, which is available to authorized users.
Among nature's arsenal of oxidative enzymes, cytochrome P450s (CYPs) catalyze the most challenging reactions, the hydroxylations of non-activated CÀ H bonds. Human CYPs are studied in drug development due to their physiological role at the forefront of metabolic detoxification, but their challenging handling makes them unsuitable for application. CYPs have a great potential for biocatalysis, but often lack appropriate features such as high and soluble expression, self-sufficient internal electron transport, high stability, and an engineerable substrate scope. We have probed these characteristics for a recently described CYP that originates from the thermophilic fungus Thermothelomyces thermophila (CYP505A30), a homolog of the well-known P450-BM3 from Bacillus megaterium. CYP505A30 is a natural monooxygenase-reductase fusion, is well expressed, and moderately tolerant towards temperature and solvent exposure. Although overall comparable, we found the stability of the enzyme's domains to be inverse to P450-BM3, with a more stable reductase compared to the heme domain. After analysis of a homology model, we created mutants of the enzyme based on literature data for P450-BM3. We then probed the enzyme variants in bioconversions using a panel of active pharmaceutical ingredients, and activities were detected for a number of structurally diverse compounds. Ibuprofen was biooxidized in a preparative scale whole cell bioconversion to 1-, 2-and 3hydroxyibuprofen.
Regioselective carbonÀ carbon bond formation belongs to the challenging tasks in organic synthesis. In this context, CÀ C bond formation catalyzed by 4-dimethylallyltryptophan synthases (4-DMATSs) represents a possible tool to regioselectively synthesize C4-prenylated indole derivatives without site-specific preactivation and circumventing the need of protection groups as used in chemical synthetic approaches. In this study, a toolbox of 4-DMATSs to produce a set of 4-dimethylallyl tryptophan and indole derivatives was identified. Using three wild-type enzymes as well as variants, various C5-substituted tryptophan derivatives as well as N-methyl tryptophan were successfully prenylated with conversions up to 90 %. Even truncated tryptophan derivatives like tryptamine and 3-indole propanoic acid were regioselectively prenylated in position C4. The acceptance of C5-substituted tryptophan derivatives was improved up to 5-fold by generating variants (e. g. T108S). The feasibility of semi-preparative prenylation of selected tryptophan derivatives was successfully demonstrated on 100 mg scale at 15 mM substrate concentration, allowing to reduce the previously published multistep chemical synthetic sequence to just a single step.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.