To date, there is no severe acute respiratory syndrome coronavirus 2- (SARS-CoV-2)-specific prognostic biomarker available. We assessed whether SARS-CoV-2 cycle threshold (Ct) value at diagnosis could predict novel CoronaVirus Disease 2019 (COVID-19) severity, clinical manifestations, and six-month sequelae. Hospitalized and outpatient cases were randomly sampled from the diagnoses of March 2020 and data collected at 6 months by interview and from the regional database for COVID-19 emergency. Patients were stratified according to their RNA-dependent-RNA-polymerase Ct in the nasopharyngeal swab at diagnosis as follows: Group A ≤20.0, 20.0< group B ≤28.0, and Group C >28.0. Disease severity was classified according to a composite scale evaluating hospital admission, worst oxygen support required, and survival. Two hundred patients were included, 27.5% in Groups A and B both, 45.0% in Group C; 90% of patients were symptomatic and 63.7% were hospitalized. The median time from COVID-19 onset to swab collection was five days. Lethality, disease severity, type, and number of signs and symptoms, as well as six-month sequelae distributed inversely among the groups with respect to SARS-CoV-2 Ct. After controlling for confounding, SARS-CoV-2 Ct at diagnosis was still associated with COVID-19-related death (p = 0.023), disease severity (p = 0.023), number of signs and symptoms (p < 0.01), and presence of six-month sequelae (p < 0.01). Early quantification of SARS-CoV-2 may be a useful predictive marker to inform differential strategies of clinical management and resource allocation.
Background: Emerging evidence supports the “variolation hypothesis” in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), but the derivative idea that the viral load of index cases may predict disease severity in secondary cases could be unsubstantiated. We assessed whether the prevalence of symptomatic infections, hospitalization, and deaths in household contacts of 2019 novel coronavirus disease (COVID-19) cases differed according to the SARS-CoV-2 PCR cycle threshold (Ct) from nasal-pharyngeal swab at diagnosis of linked index cases.Methods: Cross-sectional study on household contacts of COVID-19 cases randomly sampled from all the infections diagnosed in March at our Microbiology Laboratory (Amedeo di Savoia, Turin). Data were retrospectively collected by phone interviews and from the Piedmont regional platform for COVID-19 emergency. Index cases were classified as high (HVl) and low viral load (LVl) according to two exploratory cut-offs of RdRp gene Ct value. Secondary cases were defined as swab confirmed or symptom based likely when not tested but presenting compatible clinical picture.Results: One hundred thirty-two index cases of whom 87.9% symptomatic and 289 household contacts were included. The latter were male and Caucasian in 44.3 and 95.8% of cases, with a median age of 34 years (19–57). Seventy-four were swab confirmed and other 28 were symptom based likely secondary cases. Considering both, the contacts of HVl and LVl did not differ in the prevalence of symptomatic infections nor COVID-19-related hospitalization and death. No difference in median Ct of index cases between symptomatic and asymptomatic, hospitalized and not hospitalized, or deceased and survived secondary cases was found. Negative findings were confirmed after adjusting for differences in time between COVID-19 onset and swab collection of index cases (median 5 days) and after removing pediatric secondary cases.Conclusions: The amount of SARS-CoV-2 of the source at diagnosis does not predict clinical outcomes of linked secondary cases. Considering the impelling release of assays for SARS-CoV-2 RNA exact quantification, these negative findings should inform clinical and public health strategies on how to interpret and use the data.
BackgroundIdentifying determinants of the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) transmission in settings of contagion is fundamental to inform containment strategies. We assessed SARS-CoV-2 cycle threshold value (Ct) from the first diagnostic nasal–pharyngeal swab of symptomatic index cases and which demographic or clinical characteristics among cases and contacts are associated with transmission risk within households.MethodsThis is a retrospective prevalence study on secondary SARS-CoV-2 cases (SC) among the household contacts of symptomatic adult index cases randomly sampled from all the SARS-CoV-2-positive diagnostic nasopharyngeal swabs analyzed at our regional referral hospital (Amedeo di Savoia Hospital, Turin, Italy) in March, 2020. Index cases underwent a telephone survey to collect their demographic and clinical data and all their household contacts. The Ct value of RdRp gene from the first diagnostic swab of index cases was recorded and index cases were grouped according to Ct tertiles (A < first tertile, first ≤ B ≤ second tertile, C ≥ second tertile). Post hoc analysis was performed in SC as well as contacts that did not undergo SARS-CoV-2 testing but developed compatible signs and symptoms. Non-parametric tests and generalized linear models were run.ResultsIndex (n = 72) and contact (n = 164) median age was 54 (48–63) and 32 (20–56) years, respectively. A total of 60, 50, and 54 subjects were contacts of group A, B, and C index cases, respectively; 35.9% of contacts were SC. Twenty-four further subjects (14.6%) met the criteria for symptom-based likely positive SC. The secondary attack rate was 36.0% (28.6–43.4), assuming a mean incubation period of 5 days and a maximum infectious period of 20 days. SC prevalence differed between Ct groups (53.3% A, 32.0% B, 20.4% C; p < 0.001). No difference in SC was found according to sex, presence of signs/symptoms, and COVID-19 severity of index cases, or according to contacts’ sex and number per household. The age of both index cases [aOR 4.52 (1.2–17.0) for 60 vs. ≤45 years old] and contacts [aOR 3.66 (1.3–10.6) for 60 vs. ≤45years old] and the Ct of the index [aOR 0.17 (0.07–0.4) for Ct ≥ 31.8 vs. Ct < 24.4] independently associated with SC risk. Sensitivity analysis including symptoms-based likely positive SC supported all the previous results.ConclusionIn confined transmission settings such as households, PCR Ct values may inform on the contagiousness of infected subjects and age may modulate transmission/contagion risk.
Background Elite controllers are able to control viral replication without antiretroviral therapy. Exceptional elite controllers do not show disease progression for more than 25 years. Different mechanisms have been proposed and several elements of both innate and adaptive immunity are implicated. Vaccines are immune stimulating agents that can promote HIV-RNA transcription; transient plasma HIV-RNA detectability has been described within 7-14 days after different vaccinations. The most reliable mechanism involved in virosuppressed people living with HIV is a generalized inflammatory response that activates bystander cells harboring latent HIV. So far no data about viral load increase in elite controllers after SARS-CoV-2 vaccination are reported in literature. Case Presentation We report the case of a 65-year-old woman of European ancestry, diagnosed with HIV-1/HCV co-infection more than 25 years ago. Since then, HIV-RNA remained undetectable and she never received ARV therapy. In 2021 she was vaccinated with mRNA-BNT162b2 vaccine (Pfizer-BioNTech®). She was administered with three doses in June, July and October 2021, respectively. The last available viral load was undetectable in March 2021. We observed an increase of VL at 32 cp/ml and 124 cp/mL, two and seven months after the first vaccine dose, respectively. During monthly follow-up, HIV-RNA gradually and spontaneously dropped becoming undetectable without ARV intervention. COVID-19 serology was positive with IgG 535 BAU/mL, showing response to vaccination. We measured total HIV-DNA at different time-points and we found it detectable both at the time of the higher plasma HIV-RNA (30 cp/10^6 PBMCs) and when it was undetectable (13 cp/10^6 PBMCs), in reduction. Conclusions This case is the first report, to our knowledge, describing a rebound of plasma HIV-RNA in an elite controller after three doses of mRNA-BNT162b2 vaccine for SARS-CoV-2. Concomitantly with a spontaneous reduction of plasma HIV-RNA ten months after the third dose of mRNA-BNT162b2 vaccine (Pfizer-BioNTech®) without antiretroviral therapy intervention, we observed a reduction of total HIV-DNA in peripheral mononuclear cells. The potential role of vaccinations in altering HIV reservoir, even in elite controllers population when plasma HIV-RNA is undetectable, could be a valuable aspect to take into account for the future HIV eradication interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.