Since the first reported case in December 2019, SARS-CoV-2 infections have become a major public health worldwide. Even with the increasing vaccination in several countries and relaxing of social distancing measures, the pandemic remains a threat especially due to the emergence of new SARS-CoV-2 variants. Despite the presence of an enzyme capable of proofreading its genome, high rates of replication provide a source of accumulation of mutations within the viral genome. In this retrospective study, samples from a cohort of industry workers tested by the SESI’s COVID-19 mass testing program from September 2020 to May 2021 were analyzed using a mutation panel in order to describe the circulation of currently identified SARS-CoV-2 variants within the samples obtained in Rio de Janeiro State. Our results demonstrated that the variant of interest (VOI) Zeta has been in circulation since October 2020 and reached 87% of prevalence in February 2021 followed by a decrease due to the emergence of Gamma variant of concern (VOC). Gamma was detected in January 2021 in our studied population, and its prevalence increased during the following months, reaching absolute prevalence within positive samples in May. The Alpha variant was detected only in 4–7% of samples during March and April while Beta VOC was not detected in our study. Our data agree with sequencing genomic surveillance databases and highlight the importance of continuous mass testing programs and variant detection in order to control viral spread and guide public health measures.
The P2X7 receptor is a critical purinergic receptor in immune cells. Its activation was associated with cathepsin release into macrophage cytosol, suggesting its involvement in lysosomal membrane permeabilization (LMP) and leakage. Nevertheless, the mechanisms by which P2X7 receptor activation induces LMP and leakage are unclear. This study investigated cellular mechanisms associated with endosomal and lysosomal leakage triggered by P2X7 receptor activation. We found that ATP at 500 μM and 5 mM (but not 50 μM) induced LMP in non-stimulated peritoneal macrophages. This effect was not observed in P2X7-deficient or A740003-pretreated macrophages. We found that the P2X7 receptor and pannexin-1 channels mediate calcium influx that might be important for activating specific ion channels (TRPM2 and two-pore channels) on the membranes of late endosomes and lysosomes leading to LMP leakage and consequent cathepsin release. These findings suggest the critical role of the P2X7 receptor in inflammatory and infectious diseases via lysosomal dysfunction.
The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to extra caution in workplaces to avoid the coronavirus disease 2019 (COVID-19). In the occupational environment, SARS-CoV-2 testing is a powerful approach in providing valuable information to detect, monitor, and mitigate the spread of the virus and preserve productivity. Here a centralized Occupational Health Center provided molecular diagnosis and genomic sequences for companies and industries in Rio de Janeiro, Brazil. From May to August 2021, around 20% of the SARS-CoV-2 positive nasopharyngeal swabs from routinely tested workers were sequenced and reproduced the replacement of Gamma with Delta variant observed in regular surveillance programs. Moreover, as a proof-of-concept on the sensibility of the occupational health genomic surveillance program described here, it was also found: i) the primo-identification of B.1.139 and A.2.5 viral genomes in Brazil and ii) an improved dating of Delta VoC evolution, by identifying earlier cases associated with AY-related genomes. We interpret that SARS-CoV-2 molecular testing of workers, independent of symptom presentation, provides an earlier opportunity to identify variants. Thus, considering the continuous monitoring of SARS-CoV-2 in workplaces, positive samples from occupation health programs should be regarded as essential to improve the knowledge on virus genetic diversity and VoC emergence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.