The family of mosquitoes (Diptera: Culicidae) contains several species of major public health relevance due to their role as vectors of human disease. One of these species, Aedes aegypti, is responsible for the transmission of some of the most important vector-borne viruses affecting humankind, including dengue fever, chikungunya and Zika. Traditionally, control of Ae. aegypti and other arthropod species has relied on the use of a relatively small diversity of chemical insecticides. However, widespread and intensive use of these substances has caused significant adverse environmental effects and has contributed to the appearance of pesticide-resistant populations in an increasing number of locations around the world, thereby dramatically reducing their efficiency. Therefore, it becomes urgent to develop novel alternative tools for vector control. In that context, our study aimed at evaluating the insecticidal activity against Ae. aegypti of aqueous extracts obtained from the fruits of Solanum mammosum L., as well as silver nanoparticles synthesized using aqueous extracts from this plant species (SmAgNPs). To perform the test, third instar Ae. aegypti larvae were exposed to increasing concentrations of plant extract and SmAgNPs for 24 h. Our results suggest that both the aqueous extract and SmAgNPs were toxic to the larvae, with SmAgNPs displaying a much higher level of toxicity than the extract alone, as reflected in their LC50 values (0.06 ppm vs 1631.27 ppm, respectively). These results suggest that both S. mammosum extracts and SmAgNPs exhibit noteworthy larvicidal activity, and should be further explored as potential source of alternative tools in the fight against insect vectors of human disease.
The mosquito speciesAedes aegyptiis the primary vector of dengue, chikungunya, and Zika infections worldwide. Since effective vaccines or drugs are not available for the prevention and/or treatment of these pathologies, vector control has been adopted as the main approach to reduce their transmission. To controlAedespopulations, the most commonly used tool is the application of chemical insecticides and, despite their effectiveness, indiscriminate use of these chemicals has led to high operational costs, appearance of resistant populations, and adverse nontarget effects. Plant-derived insecticides may be an eco-friendly, cost-effective, and safe biocontrol alternative. The present study was carried out to evaluate the larvicidal activity of leaf extracts ofAmbrosia arborescensand green-synthesized silver nanoparticles (AgNPs) using aqueous extracts obtained from this plant against third instar larvae ofAe. aegypti. To test this, larvae were exposed for 24 h to the aqueous plant extract at 1500, 3000, 4500, and 6000 ppm and the plant-synthesized AgNPs at 0.2, 0.3, 0.4, and 0.5 ppm. In laboratory assays, AgNPs were more toxic (LC50 = 0.28 ppm; LC90 = 0.43 ppm) than the plant extract (LC50 = 1844.61 ppm; LC90 = 6043.95 ppm). These results suggest thatA. arborescensaqueous extract and green-synthesized silver nanoparticles produced from those extracts have the potential to be developed into suitable alternative tools useful for the control ofAe. aegyptipopulations.
Background: Illnesses transmitted by Aedes aegypti (Linnaeus, 1762) such as dengue, chikungunya and Zika comprise a considerable global burden; mosquito control is the primary public health tool to reduce disease transmission. Current interventions are inadequate and insecticide resistance threatens the effectiveness of these options. Dried attractive bait stations (DABS) are a novel mechanism to deliver insecticide to Ae. aegypti. The DABS are a high-contrast 28 inch 2 surface coated with dried sugar-boric acid solution. Aedes aegypti are attracted to DABS by visual cues only, and the dried sugar solution elicits an ingestion response from Ae. aegypti landing on the surface. The study presents the development of the DABS and tests of their impact on Ae. aegypti mortality in the laboratory and a series of semi-field trials. Methods: We conducted multiple series of laboratory and semi-field trials to assess the survivability of Ae. aegypti mosquitoes exposed to the DABS. In the laboratory experiments, we assessed the lethality, the killing mechanism, and the shelf life of the device through controlled experiments. In the semi-field trials, we released laboratory-reared female Ae. aegypti into experimental houses typical of peri-urban tropical communities in South America in three trial series with six replicates each. Laboratory experiments were conducted in Quito, Ecuador, and semi-field experiments were conducted in Machala, Ecuador, an area with abundant wild populations of Ae. aegypti and endemic arboviral transmission. Results: In the laboratory, complete lethality was observed after 48 hours regardless of physiological status of the mosquito. The killing mechanism was determined to be through ingestion, as the boric acid disrupted the gut of the mosquito. In experimental houses, total mosquito mortality was greater in the treatment house for all series of experiments (P < 0.0001). Conclusions: The DABS devices were effective at killing female Ae. aegypti under a variety of laboratory and semifield conditions. DABS are a promising intervention for interdomiciliary control of Ae. aegypti and arboviral disease prevention.
Mosquitoes are prolific vectors of human pathogens; a clear and accurate understanding of the organization of their antimicrobial defenses is crucial for informing the development of transmission control strategies. The canonical infection response in insects, as described in the insect modelDrosophila melanogaster, is pathogen type-dependent, with distinct stereotypical responses to Gram-negative bacteria and Gram-positive bacteria/fungi mediated by the activation of the Imd and Toll pathways, respectively. To determine whether this pathogen-specific discrimination is shared by mosquitoes, we used RNAseq to capture the genome-wide transcriptional response ofAedes aegyptiandAnopheles gambiae(s.l.) to systemic infection with Gram-negative bacteria, Gram-positive bacteria, yeasts, and filamentous fungi, as well as challenge with heat-killed Gram-negative, Gram-positive, and fungal pathogens. From the resulting data, we found thatAe. aegyptiandAn. gambiaeboth mount a core response to all categories of infection, and this response is highly conserved between the two species with respect to both function and orthology. When we compared the transcriptomes of mosquitoes infected with different types of bacteria, we observed that the intensity of the transcriptional response was correlated with both the virulence and growth rate of the infecting pathogen. Exhaustive comparisons of the transcriptomes of Gram-negative-challenged versus Gram-positive-challenged mosquitoes yielded no difference in either species. InAe. aegypti, however, we identified transcriptional signatures specific to bacterial infection and to fungal infection. The bacterial infection response was dominated by the expression of defensins and cecropins, while the fungal infection response included the disproportionate upregulation of an uncharacterized family of glycine-rich proteins. These signatures were also observed inAe. aegyptichallenged with heat-killed bacteria and fungi, indicating that this species can discriminate between molecular patterns that are specific to bacteria and to fungi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.