Purpose: Molecular characterization of circulating tumor cells (CTC) holds great promise. Unfortunately, routinely isolated CTC fractions currently still contain contaminating leukocytes, which makes CTC-specific molecular characterization extremely challenging. In this study, we determined mRNA and microRNA (miRNA) expression of potentially CTC-specific genes that are considered to be clinically relevant in breast cancer.Experimental Design: CTCs were isolated with the epithelial cell adhesion molecule-based CellSearch Profile Kit. Selected genes were measured by real-time reverse transcriptase PCR in CTCs of 50 metastatic breast cancer patients collected before starting first-line systemic therapy in blood from 53 healthy blood donors (HBD) and in primary tumors of 8 of the patients. The molecular profiles were associated with CTC counts and clinical parameters and compared with the profiles generated from the corresponding primary tumors.Results: We identified 55 mRNAs and 10 miRNAs more abundantly expressed in samples from 32 patients with at least 5 CTCs in 7.5 mL of blood compared with samples from 9 patients without detectable CTCs and HBDs. Clustering analysis resulted in 4 different patient clusters characterized by 5 distinct gene clusters. Twice the number of patients from cluster 2 to 4 had developed both visceral and nonvisceral metastases. Comparing transcript levels in CTCs with those measured in corresponding primary tumors showed clinically relevant discrepancies in estrogen receptor and HER2 levels.Conclusions: Our study shows that molecular profiling of low numbers of CTCs in a high background of leukocytes is feasible and shows promise for further studies on the clinical relevance of molecular characterization of CTCs.
Detection of circulating tumor cells (CTCs) in whole blood from metastatic cancer patients by the CellSearch TM CTC Test (Veridex LLC, Warren, NJ, USA) has been shown to have clinical relevance. In addition to enumeration, there is great interest in molecular characterization of these CTCs. We aimed to establish a robust method to perform mRNA expression analysis of multiple genes by a real-time reverse transcriptase (RT)-PCR on small numbers of CTCs enriched from whole blood by the CellSearch TM system. Despite the 4 log depletion of leukocytes after CellSearch enrichment, the CTC-enriched fractions still contained leukocytes, in particular B-lymphocytes, which severely interfered with our CTC-specific gene expression profiling. After extensive washing and leukocyte-specific depletion by anti-CD45 coated magnetic beads prior to CellSearch TM enrichment, the number of leukocytes present in the enriched fraction was still high (range 60-929). However, by using a set of genes with no or minor expression by leukocytes, we succeeded to perform quantitative gene expression profiling specific for as little as one breast cancer CTC present in a CTC-enriched environment typically containing over 800 contaminating leukocytes. Our method allows molecular characterization specific for as little as one CTC, and can be used to expand the understanding of the biology of metastasis and, potentially, to improve patient management.
Although anti-EGFR therapy has established efficacy in metastatic colorectal cancer, only 10-20% of unselected patients respond. This is partly due to KRAS and BRAF mutations, which are currently assessed in the primary tumor. To improve patient selection, assessing mutation status in circulating tumor cells (CTCs), which possibly better represent metastases than the primary tumor, could be advantageous. We investigated the feasibility of KRAS and BRAF mutation detection in colorectal CTCs by comparing three sensitive methods and compared mutation status in matching primary tumor, liver metastasis and CTCs. CTCs were isolated from blood drawn from 49 patients before liver resection using CellSearch TM . DNA and RNA was isolated from primary tumors, metastases and CTCs. Mutations were assessed by co-amplification at lower denaturation temperature-PCR (Transgenomic TM ), real-time PCR (EntroGen TM ) and nested Allele-Specific Blocker (ASB-)PCR and confirmed by Sanger sequencing. In 43 of the 49 patients, tissue RNA and DNA was of sufficient quantity and quality. In these 43 patients, discordance between primary and metastatic tumor was 23% for KRAS and 7% for BRAF mutations. RNA and DNA from CTCs was available from 42 of the 43 patients, in which ASB-PCR was able to detect the most mutations. Inconclusive results in patients with low CTC counts limited the interpretation of discrepancies between tissue and CTCs. Determination of KRAS and BRAF mutations in CTCs is challenging but feasible. Of the tested methods, nested ASB-PCR, enabling detection of KRAS and BRAF mutations in patients with as little as two CTCs, seems to be superior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.