SummaryReasons for performing study: Insulin leads to overexpression of endothelin-1 (ET-1) in the endothelium of insulin-resistant rodents. If this is also the case in equine laminar tissue, this could explain the predisposition of insulin-resistant horses to laminitis. Objectives: To investigate the effect of hyperinsulinaemia on metabolism and vascular resistance of the isolated equine digit in a model of extracorporeal perfusion. Study design: Randomised, controlled study with interventional group, with blinded evaluation of histology results. Method: After exsanguination, equine digits (n = 11) and autologous blood were collected at an abattoir. One digit served as a hyperinsulinaemic pilot limb, 5 digits were assigned to the hyperinsulinaemic perfusion (IP) group and 5 to the control perfusion (CP) group. Digits were perfused for 10 h at a defined perfusion rate of 12 ml/min/kg. After the first hour of perfusion (equilibration period), insulin was added to the reservoir of the IP digits. Perfusion pressure, glucose consumption, lactate and lactate dehydrogenase were monitored. Vascular resistance was calculated as perfusion pressure (in millimetres of mercury) in relation to the flow rate (in millilitres per minute). After perfusion, histology samples of the dorsal hoof wall (haematoxylin & eosin or periodic acid-Schiff) were evaluated. Immunohistology with a polyclonal rabbit-derived anti-endothelin antibody was used for detection of ET-1. Results: In the IP group, the mean insulin concentration in the plasma of the perfusate was 142 Ϯ 81 miu/ml, while insulin concentration was <3 miu/ml in the CP group. Mean vascular resistance was significantly higher (P<0.01) in the IP group (2.04 Ϯ 1.13 mmHg/ml/min) than in the CP group (1.31 Ϯ 0.55 mmHg/ml/min). Histology of the IP group samples showed significantly more vessels with an open lumen, increased width of the secondary epidermal lamellae and formation of oedema. In the lamellar vessels (veins and arteries) and nerve fibres, ET-1 expression was much more prominent in the IP group than in the CP group samples. Conclusions: Short-term hyperinsulinaemia leads to increased vascular resistance in the equine digit and increased expression of ET-1 in the laminar tissue.
In the blood-perfused isolated forelimbs of equine cadavers, exposure to LPS led to significant changes in the laminar tissue as well as to metabolic changes. Therefore, endotoxin should be considered as a causative factor for laminitis and not merely as a risk factor.
In isolated perfused equine limbs, endotoxin at a clinically relevant concentration induced a distinct inflammatory reaction with intravascular and extravascular accumulation of leukocytes in the laminar tissue, similar to that seen during the developmental phase of laminitis. Therefore, endotoxin should be considered as a causative factor for some types of laminitis.
OBJECTIVE To investigate the effect of lipopolysaccharide (LPS) on type VII collagen- cleaving matrix metalloproteinases (MMPs) in the lamellar tissue of extracorporeally perfused equine limbs. SAMPLE 10 right forelimbs and 3 left forelimbs collected from 10 adult horses after slaughter at a licensed abattoir. PROCEDURES Extracorporeal perfusion of the isolated equine limbs was performed for 10 hours under physiologic conditions (control-perfused limbs; n = 5) and with the addition of 80 ng of LPS/L of perfusate (LPS-perfused limbs; 5). Lamellar tissue specimens were then collected from the dorsal aspect of the hooves. Additionally, corresponding control specimens were collected from the 3 nonperfused left forelimbs. Immunohistochemical analysis was performed on paraffin-embedded tissue blocks with antibodies against total (latent and active) MMP-1, MMP-2, MMP-8, and MMP-9 as well as antibody against active MMP-9. Intensity of immunohistochemical staining was scored, and stain distribution in the lamellar tissue was noted. RESULTS Staining intensity of total and active MMP-9 was significantly increased in LPS-perfused versus control-perfused limbs. No such difference was identified for MMP-1, MMP-2, and MMP-8. CONCLUSIONS AND CLINICAL RELEVANCE Of the 4 MMPs that are capable of degrading type VII collagen, MMP-9 was the only one for which production increased in the lamellar tissue of isolated equine limbs perfused with versus without a clinically relevant concentration of LPS. These results suggested that MMP-9 may be involved in initiation of pathological changes in lamellar tissue in endotoxin-induced laminitis, whereas MMP-1, MMP-2, and MMP-8 may be less relevant.
Hyperinsulinemia caused significant changes in endothelin receptor expression, which suggested that ETR antagonists might be beneficial for treatment of laminitis in horses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.