Physicochemical gut conditions and the composition and topology of the intestinal microbiota in the major gut compartments of the root-feeding larva of the European cockchafer (Melolontha melolontha) were studied. Axial and radial profiles of pH, O 2 , H 2 , and redox potential were measured with microsensors. Terminal restriction fragment length polymorphism (T-RFLP) analysis of bacterial 16S rRNA genes in midgut samples of individual larvae revealed a simple but variable and probably nonspecific community structure. In contrast, the T-RFLP profiles of the hindgut samples were more diverse but highly similar, especially in the wall fraction, indicating the presence of a gut-specific community involved in digestion. While high acetate concentrations in the midgut and hindgut (34 and 15 mM) corroborated the presence of microbial fermentation in both compartments, methanogenesis was confined to the hindgut. Methanobrevibacter spp. were the only methanogens detected and were restricted to this compartment. Bacterial 16S rRNA gene clone libraries of the hindgut were dominated by clones related to the Clostridiales. Clones related to the Actinobacteria, Bacillales, Lactobacillales, and ␥-Proteobacteria were restricted to the lumen, whereas clones related to the -and ␦-Proteobacteria were found only on the hindgut wall. Results of PCR-based analyses and fluorescence in situ hybridization of whole cells with group-specific oligonucleotide probes documented that Desulfovibrio-related bacteria comprise 10 to 15% of the bacterial community at the hindgut wall. The restriction of the sulfate-reducer-specific adenosine-5-phosphosulfate reductase gene apsA to DNA extracts of the hindgut wall in larvae from four other populations in Europe suggested that sulfate reducers generally colonize this habitat.
Propionate is an important intermediate of the degradation of organic matter in many anoxic environments. In methanogenic environments, due to thermodynamic constraints, the oxidation of propionate requires syntrophic cooperation of propionate-fermenting proton-reducing bacteria and H 2 -consuming methanogens. We have identified here microorganisms that were active in syntrophic propionate oxidation in anoxic paddy soil by rRNA-based stable-isotope probing (SIP). After 7 weeks of incubation with [ 13 C]propionate (<10 mM) and the oxidation of ϳ30 mol of 13 C-labeled substrate per g dry weight of soil, we found that archaeal nucleic acids were 13 C labeled to a larger extent than those of the bacterial partners. Nevertheless, both terminal restriction fragment length polymorphism and cloning analyses revealed Syntrophobacter spp., Smithella spp., and the novel Pelotomaculum spp. to predominate in "heavy" 13 C-labeled bacterial rRNA, clearly showing that these were active in situ in syntrophic propionate oxidation. Among the Archaea, mostly Methanobacterium and Methanosarcina spp. and also members of the yet-uncultured "rice cluster I" lineage had incorporated substantial amounts of 13 C label, suggesting that these methanogens were directly involved in syntrophic associations and/or thriving on the [13 C]acetate released by the syntrophs. With this first application of SIP in an anoxic soil environment, we were able to clearly demonstrate that even guilds of microorganisms growing under thermodynamic constraints, as well as phylogenetically diverse syntrophic associations, can be identified by using SIP. This approach holds great promise for determining the structure and function relationships of further syntrophic or other nutritional associations in natural environments and for defining metabolic functions of yet-uncultivated microorganisms.In many anoxic environments, which are low in electron acceptors such as oxygen, nitrate, sulfate, and iron or manganese oxides, complex organic matter is degraded to methane and CO 2 by the cooperation of anaerobic microorganisms of several metabolic guilds (47). An important intermediate of organic matter conversion under methanogenic conditions is propionate, which may account for up to 35% of methanogenesis in anaerobic digestors (35) and up to 30% in paddy soil (15,26). The degradation of propionate to acetate, CO 2 , and 3 H 2 is highly endergonic under standard conditions (⌬G°Ј ϭ ϩ76.1 kJ/mol), but it can be accomplished by syntrophic cooperation of propionate-oxidizing hydrogen-producing bacteria and hydrogen (or formate)-scavenging partner microorganisms (methanogens), which maintain a low hydrogen partial pressure (for a review, see reference 47). Only in such syntrophic associations does propionate degradation become feasible under methanogenic conditions. The process has been studied extensively in flooded rice field soil (26, 27, 58), in upflow anaerobic sludge blanket reactors (52), and sediments (46,49). In all environments studied, the methyl-malonyl-coenzyme...
A stable isotope probing (SIP) approach was used to study aerobic methane-oxidizing bacteria (methanotrophs) in lake sediment. Oligotrophic Lake Stechlin was chosen because it has a permanently oxic sediment surface. 16S rRNA and the pmoA gene, which encodes a subunit of the methane monooxygenase enzyme, were analysed following the incubation of sediment with (13) CH(4) and the separation of (13) C-labelled DNA and RNA from unlabelled nucleic acids. The incubation with (13) CH(4) was performed over a 4-day time-course and the pmoA genes and transcripts became progressively labelled such that approximately 70% of the pmoA genes and 80% of the transcripts were labelled at 96 h. The labelling of pmoA mRNA was quicker than pmoA genes, demonstrating that mRNA-SIP is more sensitive than DNA-SIP; however, the general rate of pmoA transcript labelling was comparable to that of the pmoA genes, indicating that the incorporation of (13) C into ribonucleic acids of methanotrophs was a gradual process. Labelling of Betaproteobacteria was clearly seen in analyses of 16S rRNA by DNA-SIP and not by RNA-SIP, suggesting that cross-feeding of the (13) C was primarily detected by DNA-SIP. In general, we show that the combination of SIP approaches provided valuable information about the activity and growth of the methanotrophic populations and the cross-feeding of methanotroph metabolites by other microorganisms.
In this study, we demonstrate the possibility of obtaining a targeted metatranscriptome from a functional group of microorganisms using a stable isotope probing (SIP) approach. Methanotrophs in lake sediment were labelled using (13)CH4, and both labelled and unlabelled-RNA were isolated and sequenced by 454 pyrosequencing. The unlabelled metatranscriptome had a large diversity of bacterial, archaeal, eukaryotic and viral sequences as expected from a diverse sediment community. In contrast, the labelled-RNA metatranscriptome was dominated by methanotroph sequences, particularly from Methylococcaceae. Transcripts of the methane monooxygenase genes pmoCAB were the most abundant in this metatranscriptome, and the pathway of methane oxidation to CO2 could be traced, as well as many steps in the ribulose monophosphate pathway for carbon assimilation. A high abundance of mRNA transcripts for proteins related to motility was detected, suggesting an importance for methanotrophs in lake sediments. This combination of SIP and metatranscriptomics should be broadly applicable, and will enhance the detection and identification of mRNA from target organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.