ObjectiveTo characterize clinical manifestations, measure frequency, and evaluate risk factors for equine recurrent uveitis (ERU) in Appaloosa horses in western Canada.Animals145 Appaloosa horses.ProceduresOphthalmic examinations were completed and eyes were classified as having no or mild clinical signs, or moderate, or severe damage from ERU. Clinical signs, age, sex, base coat color, and pattern were recorded. Whole blood and/or mane hair follicles were collected for DNA extraction, and all horses were tested for the leopard complex (LP) spotting pattern allele. Pedigree analysis was completed on affected and unaffected horses, and coefficients of coancestry (CC) and inbreeding (COI) were determined.ResultsEquine recurrent uveitis was confirmed in 20 (14%) horses. The mean age of affected horses was 12.3 years (±5.3; range 3‐25). Age was a significant risk factor for ERU diagnosis (ORyear = 1.15) and classification (ORyear = 1.19). The fewspot coat pattern was significantly associated with increased risk for ERU compared to horses that were minimally patterned or true solids. The LP/LP genotype was at a significantly greater risk for ERU compared to lp/lp (OR = 19.4) and LP/lp (OR = 6.37). Classification of ERU was greater in the LP/LP genotype compared to LP/lp. Affected horses had an average CC of 0.066, and there was a significant difference in the distribution of CC for affected horses versus the control group (P = .021). One affected horse was the sire or grandsire of nine other affected.ConclusionsAge, coat pattern, and genetics are major risk factors for the diagnosis and classification of ERU in the Appaloosa.
Achieving a maximal safe extent of resection during brain tumor surgery is the goal for improved patient prognosis. Fluorescence‐guided neurosurgery using 5‐aminolevulinic acid (5‐ALA) induced protoporphyrin IX has thereby become a valuable tool enabling a high frequency of complete resections and a prolonged progression‐free survival in glioblastoma patients. We present a widefield fluorescence lifetime imaging device with 250 mm working distance, working under similar conditions such as surgical microscopes based on a time‐of‐flight dual tap CMOS camera. In contrast to intensity‐based fluorescence imaging, our method is invariant to light scattering and absorption while being sensitive to the molecular composition of the tissue. We evaluate the feasibility of lifetime imaging of protoporphyrin IX using our system to analyze brain tumor phantoms and fresh 5‐ALA‐labeled human tissue samples. The results demonstrate the potential of our lifetime sensing device to go beyond the limitation of current intensity‐based fluorescence‐guided neurosurgery.
SummaryEquine recurrent uveitis (ERU) is characterized by intraocular inflammation that often leads to blindness in horses. Appaloosas are more likely than any other breed to develop insidious ERU, distinguished by low‐grade chronic intraocular inflammation, suggesting a genetic predisposition. Appaloosas are known for their white coat spotting patterns caused by the leopard complex spotting allele (LP) and the modifier PATN1. A marker linked to LP on ECA1 and markers near MHC on ECA20 were previously associated with increased ERU risk. This study aims to further investigate these loci and identify additional genetic risk factors. A GWAS was performed using the Illumina Equine SNP70 BeadChip in 91 horses. Additive mixed model approaches were used to correct for relatedness. Although they do not reach a strict Bonferroni genome‐wide significance threshold, two SNPs on ECA1 and one SNP each on ECA12 and ECA29 were among the highest ranking SNPs and thus warranted further analysis (P = 1.20 × 10−5, P = 5.91 × 10−6, P = 4.91 × 10−5, P = 6.46 × 10−5). In a second cohort (n = 98), only an association with the LP allele on ECA1 was replicated (P = 5.33 × 10−5). Modeling disease risk with LP, age and additional depigmentation factors (PATN1 genotype and extent of roaning) supports an additive role for LP and suggests an additive role for PATN1. Genotyping for LP and PATN1 may help predict ERU risk (AUC = 0.83). The functional role of LP and PATN1 in ERU development requires further investigation. Testing samples across breeds with leopard complex spotting patterns and a denser set of markers is warranted to further refine the genetic components of ERU.
Feline infectious peritonitis (FIP) is a common, fatal, systemic disease of cats. This case report describes the antemortem diagnosis of FIP in a 2-year-old spayed female Sphinx cat that presented with a bilateral panuveitis and multiple papular cutaneous lesions. Histopathologically, the skin lesions were characterized by perivascular infiltrates of macrophages, neutrophils, with fewer plasma cells, mast cells, and small lymphocytes in the mid- to deep dermis. Immunohistochemistry for intracellular feline coronavirus (FeCoV) antigen demonstrated positive staining in dermal macrophages providing an antemortem diagnosis of a moderate, nodular to diffuse, pyogranulomatous perivascular dermatitis due to FIP infection. Obtaining an antemortem diagnosis of FIP can be a challenge and cutaneous lesions are rare in the disease. Recognition and biopsy of any cutaneous lesions in cats with panuveitis and suspected FIP can help establish an antemortem diagnosis of the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.