Objective Pharmacogenomics (PGx) is a clinically significant factor in the safe and efficacious use of medicines. While PGx knowledge is abundant for other populations, there are scarce PGx data on African populations and is little knowledge on drug-gene interactions for medicines used to treat diseases common in Africa. The aim of this study was to use a customdesigned open array to genotype clinically actionable variants in a Zimbabwean population. This study also identified some of the commonly used drugs in Zimbabwe and the associated genes involved in their metabolism.Methods A custom-designed open array that covers 120 genetic variants was used to genotype 522 black Zimbabwean healthy volunteers using TaqMan-based single nucleotide polymorphism genotyping. Data were also accessed from Essential Drugs' List in Zimbabwe (EDLIZ), and the medicines were grouped into the associated biomarker groups based on their metabolism. We also estimated the national drug procurement levels for medicines that could benefit from PGx-guided use based on the data obtained from the national authorities in Zimbabwe. ResultsThe results demonstrate the applicability of an open-array chip in simultaneously determining multiple genetic variants in an individual, thus significantly reducing cost and time to generate PGx data. There were significantly high frequencies of African-specific variants, such as the CYP2D6*17 and *29 variants and the CYP2B6*18 variant. The data obtained showed that the Zimbabwean population exhibits PGx variations in genes important for the safe and efficacious use of drugs approved by the EDLIZ and are procured at significantly large amounts annually. The study has established a cohort of genotyped healthy volunteers that can be accessed and used in the conduct of clinical pharmacogenetic studies for drugs entering a market of people of predominantly African ancestry. ConclusionOur study demonstrated the potential benefit of integrating PGx in Zimbabwe for the safe and efficacious use of drugs that are commonly used.
Tamoxifen is the most used hormonal therapy for estrogen receptor positive breast cancer. CYP2D6 is the main enzyme in the metabolic pathway of tamoxifen to endoxifen. Variations in endoxifen plasma concentrations are associated with CYP2D6 polymorphisms. This study aimed to determine the association between the CYP2D6 polymorphisms and endoxifen plasma concentrations in a cohort of Zimbabwean breast cancer patients (n = 40). TaqMan genotyping and copy number assays were done to determine CYP2D6 genotypes. Tamoxifen and metabolites were quantitated using LC-MS/MS. The population had high frequencies of the CYP2D6 reduced function alleles, *17 (15%) and *29 (18%). The median endoxifen concentration was 4.78 ng/ml and 55% of the patients, mostly intermediate metabolizers were below the endoxifen therapeutic threshold 5.97 ng/ml. The CYP2D6 phenotypes and activity scores were significantly associated with endoxifen plasma concentrations (p = 0.0151) and with endoxifen to N-desmethyl tamoxifen ratios (p = 0.0006).
Tamoxifen is the most used hormonal therapy for oestrogen receptor‐positive breast cancer. CYP2D6 is the main enzyme in the metabolic pathway of tamoxifen to endoxifen. Variations in endoxifen plasma concentrations are associated with CYP2D6 polymorphisms. This study aimed to determine the association between the CYP2D6 polymorphisms and endoxifen plasma concentrations in a cohort of Zimbabwean breast cancer patients (n = 40). TaqMan genotyping and copy number assays were done to determine CYP2D6 genotypes. Tamoxifen and metabolites were quantitated using LC‐MS/MS. The population had high frequencies of the CYP2D6 reduced function alleles, *17 (15%) and *29 (18%). The median endoxifen concentration was 4.78 ng/mL, and in 55% of the patients, mostly intermediate metabolizers were below the endoxifen therapeutic threshold of 5.97 ng/mL. The CYP2D6 phenotypes and activity scores were significantly associated with endoxifen plasma concentrations (P = 0.0151) and with endoxifen to N‐desmethyl‐tamoxifen ratios (P = 0.0006).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.