In the management of accelerating wound healing, moist environments play an important role. Compared with other scaffolds of various forms, hydrogels can maintain a moist environment in the wound area. They are cross-linked hydrophilic polymeric networks that resemble natural soft tissues and extracellular matrices. Among them, injectable hydrogels have attracted great attention in wound repair, as they can be injected into irregular-shaped skin defects and formed in situ to shape the contour of different dimensions. The excellent compliance makes hydrogels easy to adapt to the wound under different conditions of skin movement. Here, we oxidized hydroxyethyl starch (O-HES) and modified carboxymethyl chitosan (M-CMCS) to fabricate an in situ forming hydrogel with excellent self-recoverable extensibility−compressibility, biocompatibility, biodegradability, and transparency for accelerating wound healing. The oxidation degree of O-HES was 74%. The amino modification degree of M-CMCS was 63%. M-CMCS/O-HES hydrogels were formed through the Schiff base reaction. The physicochemical properties of M-CMCS/O-HES hydrogels with various ratios were investigated, and M-CMCS/O-HES hydrogel with a volume ratio of 5:5 exhibited appropriate gelation time, notable water-retaining capacity, self-recoverable conformal deformation, suitable biodegradability, and good biocompatibility for wound-healing application. Then, skin wound-healing experimental studies were carried out in Sprague−Dawley rats with fullthickness skin defects. Significant outcomes were achieved in the M-CMCS/O-HES hydrogel-treated group including higher wound closure percentage, more granulation tissue formation, faster epithelialization, and decreased collagen deposition. These findings demonstrate that using the obtained M-CMCS/O-HES hydrogels is a promising therapeutic strategy for wound healing.
Background/Aims: Over the past decade, heat shock protein 90 (Hsp90) has emerged as a potential therapeutic target for cancer. However, the molecular mechanisms of down-regulation Hsp90 expression in osteosarcoma are incompletely understood. To develop potential therapy targeting Heat shock protein 90B1 (Hsp90B1), we studied the roles of miR- 223 in the proliferation and apoptosis of human osteosarcoma. Methods: pcDNA3.1(+)- miR-223 plasmid vectors were constructed and transfected into MG63 cells. Co-transfection of miR-223 expression vector with pMIR-Hsp90B1 (The recombined vector of pMIR-GLOTM luciferase vector containing Hsp90B1-3′UTR) led to the reduced activity of luciferase in a dual-luciferase reporter gene assay, suggesting that Hsp90B1 is a target gene of miR-223. Expression of HSP90B1 was detected by RT-PCR and western blotting analysis. Cell proliferation was determined using the MTT assay. Cell-cycle distribution and apoptosis were examined by flow cytometry. PI3K, p-Akt, Akt, mTOR, Bcl-2 and Bid were also detected by western blotting analysis. After a mouse xenograft model of human MG63 tumors was constructed, tumor growth, microvessel density and proliferation in each group was determined. Results: The pcDNA3.1(+)-miR-223 vector efficiently suppressed the expression of HSP90B1, while silencing miR-223 increased expression of Hsp90B1. Furthermore, overexpression of miR-223 results in significant inhibition of cell growth on culture plates. Moreover, cancer cells showed significant G0/G1 arrest and increased apoptosis due to gene silencing. Protein levels of PI3k, p-Akt, mTOR, and Bcl-2 were decreased, whereas Bid levels were increased. Microvessel density as assessed by CD34 levels and cell growth by PCNA levels decreased according to immunohistochemical analysis. Conclusion: Hsp90B1 is a direct target of miR-223 and miR- 223 may have a tumor suppressor function in osteosarcoma through the PI3K/Akt/mTOR pathway and could be used in anticancer therapies in osteosarcoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.