Conventional chemotherapy of pancreatic cancer (PaCa) suffers the problems of low drug permeability and inherent or acquired drug resistance. Development of new strategies for enhanced therapy still remains a great challenge. Herein, we report a new ultrasound-targeted microbubble destruction (UTMD)-promoted delivery system based on dendrimer-entrapped gold nanoparticles (Au DENPs) for co-delivery of gemcitabine (Gem) and miR-21 inhibitor (miR-21i).Methods: In this study, Gem-Au DENPs/miR-21i was designed and synthesized. The designed polyplexes were characterized via transmission electron microscopy (TEM), Gel retardation assay and dynamic light scattering (DLS). Then, the optimum exposure parameters were examined by an ultrasound exposure platform. The cellular uptake, cytotoxicity and anticancer effects in vitro were analyzed by confocal laser microscopy, spectra microplate reader, flow cytometry and a chemiluminescence imaging system. Lastly, the anticancer effects in vivo were evaluated by contrast-enhanced ultrasound (CEUS), hematoxylin and eosin (H&E) staining, TUNEL staining and comparison of tumor volume.Results: The results showed that the Gem-Au DENPs/miR-21i can be uptake by cancer cells and the cellular uptake was further facilitated by UTMD with an ultrasound power of 0.4 W/cm2 to enhance the cell permeability. Further, the co-delivery of Gem and miR-21i with or without UTMD treatment displayed 82-fold and 13-fold lower IC50 values than the free Gem, respectively. The UTMD-promoted co-delivery of Gem and miR-21i was further validated by in vivo treatment and showed a significant tumor volume reduction and an increase in blood perfusion of xenografted pancreatic tumors.Conclusion: The co-delivery of Gem and miR-21i using Au DENPs can be significantly promoted by UTMD technology, hence providing a promising strategy for effective pancreatic cancer treatments.
Developing an excellent hemostatic material with good biocompatibility and high blood absorption capacity for rapid hemostasis of deep non-compressible hemorrhage remains a significant challenge. Herein, a novel conjugate electrospinning strategy to prepare an ultralight 3D gelatin sponge consisting of continuous interconnected nanofibers. This unique fluffy nanofiber structure endows the sponge with low density, high surface area, compressibility, and ultrastrong liquid absorption capacity. In vitro assessments show the gelatin nanofiber sponge has good cytocompatibility, high cell permeability, and low hemolysis ratio. The rat subcutaneous implantation studies demonstrate good biocompatibility and biodegradability of gelatin nanofiber sponge. Gelatin nanofiber sponge aggregates and activates platelets in large quantities to accelerate the formation of platelet embolism, and simultaneously escalates other extrinsic and intrinsic coagulation pathways, which collectively contribute to its superior hemostatic capacity. In vivo studies on an ear artery injury model and a liver trauma model of rabbits demonstrate that the gelatin nanofiber sponge rapidly induce stable blood clots with least blood loss compared to gelatin nanofiber membrane, medical gauze, and commercial gelatin hemostatic sponge. Hence, the gelatin nanofiber sponge holds great potential as an absorbable hemostatic agent for rapid hemostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.