The investigation on the formation mechanism of helical structures and the synthesis of helical materials is attractive for scientists in different fields. Here we report the synthesis of helical mesoporous materials with chiral channels in the presence of achiral surfactants. More importantly, we suggest a simple and purely interfacial interaction mechanism to explain the spontaneous formation of helical mesostructures. Unlike the proposed model for the formation of helical molecular chains or surpramolecular packing based on the geometrically motivated model or the entropically driven model, the origin of the helical mesostructured materials may be attributed to a morphological transformation accompanied by a reduction in surface free energy. After the helical morphology is formed, the increase in bending energy together with the derivation from a perfect hexagonal mesostructure may limit the curvature of helices. Our model may be general and important in the designed synthesis of helical mesoporous materials.
Flexible single crystalline R-MoO 3 nanobelts with widths of 200-500 nm, lengths of 5-10 µm, and thicknesses of ∼50 nm have been prepared by a facile hydrothermal treatment method. When fabricated as the cathode for lithium ion batteries, the as-synthesized R-MoO 3 nanobelts exhibit excellent rate capability, large capacity, and good cycling stability. An initial discharge capacity of 176 mAh/g can be obtained at 5000 mA/g, retaining a capacity of 115 mAh/g after 50 cycles. The superior high-rate capability can be attributed to the increased conductivity of the electrode during cycling and the nanobelts morphology. The excellent performance makes the R-MoO 3 nanobelts a promising cathode material for rechargeable lithium ion batteries in the application of electronic vehicles and hybrid electronic vehicles.
The coordinated configuration of atomic platinum (Pt) has always been identified as an active site with high intrinsic activity for hydrogen evolution reaction (HER). Herein, we purposely synthesize single vacancies in a carbon matrix (defective graphene) that can trap atomic Pt to form the Pt–C3 configuration, which gives exceptionally high reactivity for HER in both acidic and alkaline solutions. The intrinsic activity of Pt–C3 site is valued with a turnover frequency (TOF) of 26.41 s–1 and mass activity of 26.05 A g–1 at 100 mV, respectively, which are both nearly 18 times higher than those of commercial 20 wt % Pt/C. It is revealed that the optimal coordination Pt–C3 has a stronger electron-capture ability and lower Gibbs free energy difference (ΔG), resulting in promoting the reduction of adsorbed H+ and the acceleration of H2 desorption, thus exhibiting the extraordinary HER activity. This work provides a new insight on the unique coordinated configuration of dispersive atomic Pt in defective C matrix for superior HER performance.
Atomic metal catalysis (AMC) provides an effective way to enhance activity for the oxygen reduction reaction (ORR). Cobalt anchored on nitrogen‐doped carbon materials have been extensively reported. The carbon‐hosted Co‐N4 structure was widely considered as the active site; however, it is very rare to investigate the activity of Co partially coordinated with N, for example, Co‐N4−xCx. Herein, the activity of Co‐N4−xCx with tunable coordination environment is investigated as the active sites for ORR catalysis. The defect (di‐vacancies) on carbon is essential for the formation of Co‐N4−xCx. N species play two important roles in promoting the intrinsic activity of atomic metal catalyst: N coordinated with Co to manipulate the reactivity by modification of electronic distribution and N helped to trap more Co to increase the number of active sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.