A hydrogel for potential applications in wound dressing should possess several peculiar properties, such as efficient self-healing ability and mechanical toughness, so as to repair muscle and skin damage. Additionally, excellent cell affinity and tissue adhesiveness are also necessary for the hydrogel to integrate with the wound tissue in practical applications. Herein, an ultratough and self-healing hydrogel with superior cell affinity and tissue adhesiveness is prepared. The self-healing ability of the hydrogel is obtained through hydrogen bonds and dynamic Schiff cross-linking between dopamine-grafted oxidized sodium alginate (OSA-DA) and polyacrylamide (PAM) chains. The covalent cross-linking is responsible for its stable mechanical structure. The combination of physical and chemical cross-linking contributes to a novel hydrogel with efficient self-healing ability (80% mechanical recovery in 6 h), high tensile strength (0.109 MPa), and ultrastretchability (2550%), which are highly desirable properties and are superior to previously reported tough and self-healing hydrogels for wound dressing applications. More remarkably, due to plenty of catechol groups on the OSA-DA chains, the hydrogel has unique cell affinity and tissue adhesiveness. Moreover, we demonstrate the practical utility of our fabricated hydrogel via both in vivo and in vitro experiments.
We have systematically investigated the impact of device size scaling on the light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes (LEDs). Devices with diameters in the range 20–300 μm have been studied. It is shown that smaller LED pixels can deliver higher power densities (despite the lower absolute output powers) and sustain higher current densities. Investigations of the electroluminescence characteristics of differently sized pixels against current density reveal that the spectral shift is dominated by blueshift at the low current density level and then by redshift at the high current density level, owing to the competition between the bandgap shrinkage caused by self-heating and band-filling effects. The redshift of the emission wavelength with increasing current density is much faster and larger for the bigger pixels, suggesting that the self-heating effect is also size dependent. This is further confirmed by the junction-temperature rise measured by the established spectral shift method. It is shown that the junction-temperature rise in smaller pixels is slower, which in turn explains why the smaller redshift of the emission wavelength with current density is present in smaller pixels. The measured size-dependent junction temperature is in reasonable agreement with finite element method simulation results.
Protein folding is a fundamental process in biology, key to understanding many human diseases. Experimentally, proteins often appear to fold via simple two- or three-state mechanisms involving mainly native-state interactions, yet recent network models built from atomistic simulations of small proteins suggest the existence of many possible metastable states and folding pathways. We reconcile these two pictures in a combined experimental and simulation study of acyl-coenzyme A-binding protein (ACBP), a two-state folder (folding time ~10 ms) exhibiting residual unfolded-state structure, and a putative early folding intermediate. Using single-molecule FRET in conjunction with side-chain mutagenises, we first demonstrate that the denatured state of ACBP at near-zero denaturant is unusually compact and enriched in long-range structure that can be perturbed by discrete hydrophobic core mutations. We then employ ultrafast laminar-flow mixing experiments to study the folding kinetics of ACBP on the microsecond timescale. These studies, along with with Trp-Cys quenching measurements of unfolded-state dynamics, suggest that unfolded-state structure forms on a surprisingly slow (~100 µs) timescale, and that sequence mutations strikingly perturb both time-resolved and equilibrium smFRET measurements in a similar way. A Markov State Model (MSM) of the ACBP folding reaction, constructed from over 30 milliseconds of molecular dynamics trajectory data, predicts a complex network of metastable stables, residual unfolded-state structure and kinetics consistent with experiment, but no well-defined intermediate preceding the main folding barrier. Taken together, these experimental and simulation results suggest that the previously characterized fast kinetic phase is not due to formation of a barrier-limited intermediate, but rather a more heterogeneous and slow acquisition of unfolded-state structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.