T helper (Th)-17 is a recently identified subtype of Th response that has been implicated in host defense and autoimmunity. We investigated whether there is evidence for a Th-17 response in human and experimental murine dry eye (DE). Gene expression in the human DE conjunctiva showed increased levels of the Th-17 inducers, interleukin (IL)-23, IL-17A, and interferon-gamma (IFN-γ). In the murine model, we found that desiccating stress increased matrix metalloproteinase-9, Th-17-associated genes (IL-6, IL-23, transforming growth factor-β1 and -2, IL-23R, IL-17R, IL-17A, retinoid-related orphan receptor-γt, and CC chemokine attractant ligand-20) and IFN-γ in cornea and conjunctiva. Furthermore, we found a significantly increased concentration of IL-17 in tears and number of IL-17-producing cells on the ocular surface. Antibody neutralization of IL-17 ameliorated experimental DE-induced corneal epithelial barrier dysfunction and decreased the expression of matrix metalloproteinases 3 and 9. Taken together, these findings suggest that IL-17 has a role in corneal epithelial barrier disruption in DE.
Tea tree oil (TTO) exhibits a potent antioxidant, antibacterial, and anti-inflammatory activity and is commonly used in skincare products. However, it is not clear whether TTO can protect gut barrier damage in inflammatory bowel disease (IBD) patients. Herein, we report the impact of terpinen-4-ol (TER, the primary constituent of TTO), on lipopolysaccharide (LPS)-induced intestinal epithelial cell barrier function impairment in intestinal porcine epithelial cell lines (IPEC-J2) and dextran sulfate sodium (DSS)-induced IBD in mice. TER protected against LPS-induced damage in IPEC-J2 cells in vitro and attenuated DSS-induced colitis in vivo. Added TER promoted the tight junction (TJ) proteins expressing in vitro and in vivo and attenuated the LPS-induced upregulation of ERK phosphorylation in IPEC-J2 cells. However, when an inhibitor of ERK phosphorylation was added, TER did not promote the expression of TJ protein, denoting that the ERK signaling pathway mediates the upregulation of TJ proteins. Our data may propose the potential application of TER in treating IBD.
Background: With evidence of warming climates, it is important to understand the effects of heat stress in farm animals in order to minimize production losses. Studying the changes in the brain proteome induced by heat stress may aid in understanding how heat stress affects brain function. The hypothalamus is a critical region in the brain that controls the pituitary gland, which is responsible for the secretion of several important hormones. In this study, we examined the hypothalamic protein profile of 10 pigs (15 ± 1 kg body weight), with five subjected to heat stress (35 ± 1°C; relative humidity = 90%) and five acting as controls (28 ± 3°C; RH = 90%). Result: The isobaric tags for relative and absolute quantification (iTRAQ) analysis of the hypothalamus identified 1710 peptides corresponding to 360 proteins, including 295 differentially expressed proteins (DEPs), 148 of which were up-regulated and 147 down-regulated, in heat-stressed animals. The Ingenuity Pathway Analysis (IPA) software predicted 30 canonical pathways, four functional groups, and four regulatory networks of interest. The DEPs were mainly concentrated in the cytoskeleton of the pig hypothalamus during heat stress. Conclusions: In this study, heat stress significantly increased the body temperature and reduced daily gain of body weight in pigs. Furthermore, we identified 295 differentially expressed proteins, 147 of which were down-regulated and 148 up-regulated in hypothalamus of heat stressed pigs. The IPA showed that the DEPs identified in the study are involved in cell death and survival, cellular assembly and organization, and cellular function and maintenance, in relation to neurological disease, metabolic disease, immunological disease, inflammatory disease, and inflammatory response. We hypothesize that a malfunction of the hypothalamus may destroy the host physical and immune function, resulting in decreased growth performance and immunosuppression in heat stressed pigs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.