A tropical cyclone (TC) is a highly destructive natural disaster. Accurate identification of key parameters of TCs is prerequisite for most TC-related research and practices. The centre position is one of TC's basic parameters. However, comparison of TC best track data released by different meteorological institutes usually indicates a noticeable discrepancy for this parameter among varied data sources. In this study, efforts are made towards identifying the centre location of TCs via deep learning techniques, based on TC satellite cloud images (SCIs). Six deep learning models are analysed and compared. YOLOv4 model achieved a confidence of 99.84%, which is better than other models. In addition, we further explore the factors affecting the positioning accuracy of the YOLOv4 model and its application to the location identification of multiple TCs and the tracking of individual TCs. Results demonstrate that the YOLOv4 model has a probability exceeding 99% for identifying multiple TC locations and also performs well for single TC tracking.
Abstract. Tropical cyclones (TCs) are one of the most destructive natural disasters. For the prevention and mitigation of TC-induced disasters, real-time monitoring and prediction of TCs is essential. At present, satellite cloud images (SCIs) are utilized widely as a basic data source for such studies. Although great achievements have been made in this field, there is a lack of concern about on the identification of TC fingerprints from SCIs, which is usually involved as a prerequisite step for follow-up analyses. This paper presents a methodology which identifies TC fingerprints via deep convolutional neural network (DCNN) techniques based on SCIs of more than 200 TCs over the northwestern Pacific basin. In total, two DCNN models have been proposed and validated, which are able to identify the TCs from not only single TC-featured SCIs but also multiple TC-featured SCIs. Results show that both models can reach 96 % of identification accuracy. As the TC intensity strengthens, the accuracy becomes better. To explore how these models work, heat maps are further extracted and analyzed. Results show that all the fingerprint features are focused on clouds during the testing process. For the majority of the TC images, the cloud features in TC's main parts, i.e., eye, eyewall, and primary rainbands, are most emphasized, reflecting a consistent pattern with the subjective method.
Abstract. Tropical Cyclones (TCs) are one of the most destructive natural disasters. For the prevention and mitigation of TC-induced disasters, real-time monitoring and prediction of TCs is essential. At present, satellite cloud images (SCIs) are utilized widely as a basic data source for such studies. Although great achievements have been made in this field, lack of concerns on the identification of TC fingerprint from SCIs have become a potential issue, since it is a prerequisite step for follow-up analyses. This paper presents a methodology which identifies TC fingerprint via Deep Convolutional Neural Network (DCNN) techniques based on SCIs of more than 200 TCs over the Northwest Pacific basin. Two DCNN models have been proposed and validated, which are able to identify the TCs from not only single-TC featured SCIs but also multi-TCs featured SCIs. Results show that both models can reach 96 % of identification accuracy. As the TC intensity strengthens, the accuracy becomes better. To explore how these models work, heat maps are further extracted and analyzed. Results show that all the fingerprint features are focused on clouds during the testing process. For the majority of TC images, the cloud features in TC’s main parts, i.e., eye, eyewall and primary rainbands, are most emphasized, reflecting a consistent pattern with the subjective method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.