Tumor immunosuppression is commonly braided with chronic inflammation during tumor development. However, the relationship between immunosuppression and inflammation in tumor microenvironment is still unclear. We have demonstrated that mast cells are accumulated and exacerbate the inflammation and immunosuppression in tumor microenvironment via SCF/c-kit signaling pathway. Here, we further elucidate the underlying mechanism, which involves both myeloid-derived suppressor cells (MDSCs) and regulatory T (Treg) cells. Our data showed that mast cells mobilized the infiltration of MDSCs to tumor and induced the production of IL-17 by MDSCs; MDSCs-derived IL-17 indirectly attracted Treg cells, enhanced their suppressor function, and induced the IL-9 production by Treg cells; in turn, IL-9 strengthened the survival and protumor effect of mast cells in tumor microenvironment. Our findings disclose a closed loop among mast cells, MDSCs and Treg cells in tumor microenvironment, which provides a new insight into the paralleled developments of inflammation and immunosuppression in tumor microenvironment. Based on these findings, we propose that targeting tumor inflammation might be a potential strategy to reverse the immunosuppression of tumor microenvironment, thus facilitating cancer immunotherapy.
Emerging evidence suggests that epithelial-mesenchymal transitions (EMTs) play important roles in tumor metastasis and recurrence. Understanding molecular mechanisms that regulate the EMT process is crucial for improving treatment of hepatocellular carcinoma (HCC). MicroRNAs (miRNAs) play important roles in HCC; however, the mechanisms by which miRNAs target the EMT and their therapeutic potential remains largely unknown. To better explore the roles of miRNAs in the EMT process, we established an EMT model in HCC cells by transforming growth factor beta 1 treatment and found that several tumor-related miRNAs were significantly decreased. Among these miRNAs, miR-125b expression was most strongly suppressed. We also found down-regulation of miR-125b in most HCC cells and clinical specimens, which correlated with cellular differentiation in HCC patients. We then demonstrated that miR-125b overexpression attenuated EMT phenotype in HCC cancer cells, whereas knockdown of miR-125b promoted the EMT phenotype in vitro and in vivo. Moreover, we found that miR-125b attenuated EMT-associated traits, including chemoresistance, migration, and stemness in HCC cells, and negatively correlated with EMT and cancer stem cell (CSC) marker expressions in HCC specimens. miR-125b overexpression could inhibit CSC generation and decrease tumor incidence in the mouse xenograft model. Mechanistically, our data revealed that miR-125b suppressed EMT and EMT-associated traits of HCC cells by targeting small mothers against decapentaplegic (SMAD)2 and 4. Most important, the therapeutic delivery of synthetic miR-125b mimics decreased the target molecule of CSC and inhibited metastasis in the mice model. These findings suggest a potential therapeutic treatment of miR-125b for liver cancer. Conclusion: miR-125b exerts inhibitory effects on EMT and EMT-associated traits in HCC by SMAD2 and 4. Ectopic expression of miR125b provides a promising strategy to treat HCC. (HEPATOLOGY 2015;62:801-815) H epatocellular carcinoma (HCC) is the fifthmost common cancer in the world and has a high mortality because of a lack of effective treatments. 1 Most HCC patients display symptoms of intrahepatic metastases or postsurgical recurrence with a low survival rate. Emerging evidence suggests that the epithelial-mesenchymal transition (EMT) contributes to tumor metastasis and recurrence, including in liver
Background: Absolute handgrip strength has been correlated with metabolic profile and metabolic disease. Whether relative handgrip strength is also associated with metabolic disease has not been assessed. This study aimed at assessing the association of relative handgrip strength with metabolic profile and metabolic disease in the general population in China.Methods: Data were derived from an ongoing cross-sectional survey of the 2013 National Physical and Health in Shanxi Province, which involved 5520 participants. Multiple linear regression or multiple logistic regression analysis were used to assess the association of absolute/relative handgrip strength with the metabolic profile, preclinical, and established stages of metabolic diseases.Results: This study revealed that relative handgrip strength, that is when normalized to BMI, was associated with: (1) in both genders for more favorable blood lipid levels of high-density lipoprotein cholesterol [males: b = 0.19 (0.15, 0.23); females: b = 0.22 (0.17, 0.28)], low-density lipoprotein cholesterol [males: b = −0.14 (−0.23, −0.05); females: b = −0.19 (−0.31, −0.18)], triglycerides [males: b = −0.58 (−0.74, −0.43); females: b = −0.55 (−0.74, −0.36)] and total cholesterol [males: b = −0.20 (−0.31, −0.10); females: b = −0.19 (−0.32, −0.06)]; and better serum glucose levels in males [b = −0.30 (−0.46, −0.15)]. (2) lower risk of impaired fasting glucose in males {third quartile [OR = 0.66 (0.45–0.95)] and fourth quartile [OR = 0.46 (0.30–0.71)] vs. first quartile} and dyslipidemia in both genders {third quartile [males: OR = 0.65 (0.48–0.87); females: OR = 0.68 (0.53–0.86)] and fourth quartile [males: OR = 0.47 (0.35–0.64); females: OR = 0.47(0.36–0.61)] vs. first quartile}. (3) lower risk of hyperlipidemia in both genders third quartile [males: OR = 0.66 (0.50–0.87); females: OR = 0.57 (0.43–0.75)] and fourth quartile [males: OR = 0.35 (0.26–0.47); females: OR = 0.51 (0.38–0.70)] vs. first quartile. However, contrary to relative handgrip strength, higher absolute handgrip strength was associated with unfavorable metabolic profiles and higher risk of metabolic diseases. These paradoxical associations were retained even after adjusted for BMI by employed a multivariate analysis.Conclusion: We conclude that measurement of relative handgrip strength can be used as a reasonable clinical predictor of metabolic health and disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.