Building structures occasionally suffer from unpredictable earthquakes, which can cause severe damage and can threaten human lives. Thus, effective control methods are needed to protect against structural vibration in buildings, and rapid finite-time convergence is a key performance indicator for vibration control systems. Rapid convergence can be ensured by applying a sliding-mode control method. However, this method would result in chattering issue, which would weaken the feasibility of the physical implementation. To address this problem, a neural terminal sliding-mode control method is proposed. The proposed method is combined with a terminal sliding-mode and a hyperbolic tangent function to ensure that the considered system can be stabilized in finite-time without chattering. Finally, the control effect of the proposed method is compared with that of LQR (linear quadratic regulator) control and switching function control. The simulation results showed that the proposed method can ensure rapid convergence while the chattering issue can be eliminated effectively. And the structural building vibration can be suppressed effectively too.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.