Many causalities and economic losses are caused by natural disasters, such as landslides and slope failures, every year. This suggests that there is a need for an early warning system to mitigate casualties and economic losses. Most of the studies on early warning systems have been carried out by predicting landslide-prone areas, but studies related to the prediction of landslide occurrence time points by the real-time monitoring of slope displacement are still insufficient. In this study, a displacement sensor and an Internet of Things (IoT) monitoring system were combined together, to monitor slope failure through cutting experiments of a real-scale model slope. Real-time monitoring of the slope movement was performed simultaneously via a low-cost, efficient, and easy-to-use IoT system. Based on the obtained displacement data, an inverse displacement analysis was performed. Finally, a slope instrumentation standard was proposed based on the slope of the inverse displacement for early evacuation before slope failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.