The principal motivation of this paper is to establish a new integral equality related to k-Riemann Liouville fractional operator. Employing this equality, we present several new inequalities for twice differentiable convex functions that are associated with Hermite–Hadamard integral inequality. Additionally, some novel cases of the established results for different kinds of convex functions are derived. This fractional integral sums up Riemann–Liouville and Hermite–Hadamard’s inequality, which have a symmetric property. Scientific inequalities of this nature and, particularly, the methods included have applications in different fields in which symmetry plays a notable role. Finally, applications of q-digamma and q-polygamma special functions are presented.
In this article, the notion of interval-valued preinvex functions involving the Riemann–Liouville fractional integral is described.
By applying this, some new refinements of the Hermite–Hadamard inequality for the fractional integral operator are presented. Some novel special cases of the presented results are discussed as well. Also, some examples are presented to validate our results. The established outcomes of our article may open another direction for different types of integral inequalities for fractional interval-valued functions, fuzzy interval-valued functions, and their associated optimization problems.
The comprehension of inequalities in convexity is very important for fractional calculus and its effectiveness in many applied sciences. In this article, we handle a novel investigation that depends on the Hermite–Hadamard-type inequalities concerning a monotonic increasing function. The proposed methodology deals with a new class of convexity and related integral and fractional inequalities. There exists a solid connection between fractional operators and convexity because of its fascinating nature in the numerical sciences. Some special cases have also been discussed, and several already-known inequalities have been recaptured to behave well. Some applications related to special means, q-digamma, modified Bessel functions, and matrices are discussed as well. The aftereffects of the plan show that the methodology can be applied directly and is computationally easy to understand and exact. We believe our findings generalise some well-known results in the literature on s-convexity.
In this article, a generalized midpoint-type Hermite–Hadamard inequality and Pachpatte-type inequality via a new fractional integral operator associated with the Caputo–Fabrizio derivative are presented. Furthermore, a new fractional identity for differentiable convex functions of first order is proved. Then, taking this identity into account as an auxiliary result and with the assistance of Hölder, power-mean, Young, and Jensen inequality, some new estimations of the Hermite-Hadamard (H-H) type inequality as refinements are presented. Applications to special means and trapezoidal quadrature formula are presented to verify the accuracy of the results. Finally, a brief conclusion and future scopes are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.