Visceral leishmaniasis (VL) or kala-azar is known to be associated with a mixed Th1-Th2 response, and effective host defense requires the induction of IFN-γ and IL-12. We address the role of the differential decline of IL-10 and TGF-β in response to sodium antimony gluconate (SAG) and amphotericin B (AmB), the therapeutic success of SAG and AmB in Indian VL, and the significance of IL-10 and TGF-β in the development and progression of post-kazla-azar dermal leishmaniasis (PKDL). In the active disease, PBMC from VL patients showed suppressed Ag-specific lymphoproliferation, IFN-γ and IL-12 production, and elevation of IL-10 and TGF-β. Cure corresponded with an elevation in IFN-γ and IL-12 production and down-regulation of IL-10 and TGF-β. Both CD4+ and CD8+ T cells were involved in IFN-γ and IL-10 production. Interestingly, the retention and maintenance of residual IL-10 and TGF-β in some SAG-treated individuals and the elevation of IL-10 and TGF-β in PKDL, a sequel to kala-azar, probably reflects the role of these cytokines in reactivation of the disease in the form of PKDL. Contrastingly, AmB treatment of VL resulted in negligible TGF-β levels and absolute elimination of IL-10, reflecting the better therapeutic activity of AmB and its probable role in the recent decline in PKDL occurrences in India. Moreover, elucidation of immune responses in Indian PKDL patients revealed a spectral pattern of disease progression where disease severity could be correlated inversely with lymphoproliferation and directly with TGF-β, IL-10, and Ab production. In addition, the enhancement of CD4+CD25+ T cells in active VL, their decline at cure, and reactivation in PKDL suggest their probable immunosuppressive role in these disease forms.
Leprosy is an infectious disease caused by the obligate intracellular pathogen Mycobacterium leprae and remains endemic in many parts of the world. Despite several major studies on susceptibility to leprosy, few genomic loci have been replicated independently. We have conducted an association analysis of more than 1,500 individuals from different case-control and family studies, and observed consistent associations between genetic variants in both TLR1 and the HLA-DRB1/DQA1 regions with susceptibility to leprosy (TLR1 I602S, case-control P = 5.7×10−8, OR = 0.31, 95% CI = 0.20–0.48, and HLA-DQA1 rs1071630, case-control P = 4.9×10−14, OR = 0.43, 95% CI = 0.35–0.54). The effect sizes of these associations suggest that TLR1 and HLA-DRB1/DQA1 are major susceptibility genes in susceptibility to leprosy. Further population differentiation analysis shows that the TLR1 locus is extremely differentiated. The protective dysfunctional 602S allele is rare in Africa but expands to become the dominant allele among individuals of European descent. This supports the hypothesis that this locus may be under selection from mycobacteria or other pathogens that are recognized by TLR1 and its co-receptors. These observations provide insight into the long standing host-pathogen relationship between human and mycobacteria and highlight the key role of the TLR pathway in infectious diseases.
Host genetic factors including major histocompatibility complex (MHC) polymorphisms influence both susceptibility to leprosy per se and also to leprosy type. Non-MHC genes may play an important role, but such genes remain undefined. The influence of two non-MHC candidate genes was assessed in a case-control study of Bengali leprosy patients from Calcutta. Recent studies have implicated variation in the vitamin D receptor (VDR) gene in susceptibility to several diseases, including osteoporosis and pulmonary tuberculosis. In this population, homozygotes for the alternate alleles of the VDR polymorphism are associated, respectively, with lepromatous and tuberculoid leprosy. The NRAMP1 (natural resistance associated macrophage protein 1) gene may influence human mycobacterial disease susceptibility based on studies with the murine homologue Nramp1. However, no significant association was found between NRAMP1 and leprosy susceptibility. This study suggests that the VDR polymorphism may influence susceptibility to some diseases by affecting the type and the strength of the host immune response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.