Alzheimer’s disease, characterized by brain deposits of amyloid-β plaques and neurofibrillary tangles, is also linked to neurovascular dysfunction and blood–brain barrier breakdown, affecting the passage of substances into and out of the brain. We hypothesized that treatment of neurovascular alterations could be beneficial in Alzheimer’s disease. Annexin A1 (ANXA1) is a mediator of glucocorticoid anti-inflammatory action that can suppress microglial activation and reduce blood–brain barrier leakage. We have reported recently that treatment with recombinant human ANXA1 (hrANXA1) reduced amyloid-β levels by increased degradation in neuroblastoma cells and phagocytosis by microglia. Here, we show the beneficial effects of hrANXA1 in vivo by restoring efficient blood–brain barrier function and decreasing amyloid-β and tau pathology in 5xFAD mice and Tau-P301L mice. We demonstrate that young 5xFAD mice already suffer cerebrovascular damage, while acute pre-administration of hrANXA1 rescued the vascular defects. Interestingly, the ameliorated blood–brain barrier permeability in young 5xFAD mice by hrANXA1 correlated with reduced brain amyloid-β load, due to increased clearance and degradation of amyloid-β by insulin degrading enzyme (IDE). The systemic anti-inflammatory properties of hrANXA1 were also observed in 5xFAD mice, increasing IL-10 and reducing TNF-α expression. Additionally, the prolonged treatment with hrANXA1 reduced the memory deficits and increased synaptic density in young 5xFAD mice. Similarly, in Tau-P301L mice, acute hrANXA1 administration restored vascular architecture integrity, affecting the distribution of tight junctions, and reduced tau phosphorylation. The combined data support the hypothesis that blood–brain barrier breakdown early in Alzheimer’s disease can be restored by hrANXA1 as a potential therapeutic approach.
Although the favorable effects of physical exercise in neurorehabilitation after traumatic brain injury (TBI) are well known, detailed pathologic and functional alterations exerted by previous physical exercise on post-traumatic cerebral inflammation have been limited. In the present study, it is showed that fluid percussion brain injury (FPI) induced motor function impairment, followed by increased plasma fluorescein extravasation and cerebral inflammation characterized by interleukin-1β, tumor necrosis factor-α (TNF-α) increase, and decreased IL-10. In addition, myeloperoxidase (MPO) increase and Na⁺,K⁺-ATPase activity inhibition after FPI suggest that the opening of blood-brain barrier (BBB) followed by neurtrophils infiltration and cerebral inflammation may contribute to the failure of selected targets leading to secondary damage. In fact, Pearson's correlation analysis revealed strong correlation of MPO activity increase with Na⁺,K⁺-ATPase activity inhibition in sedentary rats. Statistical analysis also revealed that previous running exercise (4 weeks) protected against FPI-induced motor function impairment and fluorescein extravasation. Previous physical training also induced IL-10 increase per se and protected against cerebral IL-1β, and TNF-α increase and IL-10 decrease induced by FPI. This protocol of physical training was effective against MPO activity increase and Na⁺,K⁺-ATPase activity inhibition after FPI. The present protection correlated with MPO activity decrease suggests that the alteration of cerebral inflammatory status profile elicited by previous physical training reduces initial damage and limits long-term secondary degeneration after TBI. This prophylactic effect may facilitate functional recovery in patients suffering from brain injury induced by TBI.
Background
Astrocytes provide a vital support to neurons in normal and pathological conditions. In Alzheimer’s disease (AD) brains, reactive astrocytes have been found surrounding amyloid plaques, forming an astrocytic scar. However, their role and potential mechanisms whereby they affect neuroinflammation, amyloid pathology, and synaptic density in AD remain unclear.
Methods
To explore the role of astrocytes on Aβ pathology and neuroinflammatory markers, we pharmacologically ablated them in organotypic brain culture slices (OBCSs) from 5XFAD mouse model of AD and wild-type (WT) littermates with the selective astrocytic toxin L-alpha-aminoadipate (L-AAA). To examine the effects on synaptic circuitry, we measured dendritic spine number and size in OBCSs from Thy-1-GFP transgenic mice incubated with synthetic Aβ42 or double transgenics Thy-1-GFP/5XFAD mice treated with LAAA or vehicle for 24 h.
Results
Treatment of OBCSs with L-AAA resulted in an increased expression of pro-inflammatory cytokine IL-6 in conditioned media of WTs and 5XFAD slices, associated with changes in microglia morphology but not in density. The profile of inflammatory markers following astrocytic loss was different in WT and transgenic cultures, showing reductions in inflammatory mediators produced in astrocytes only in WT sections. In addition, pharmacological ablation of astrocytes led to an increase in Aβ levels in homogenates of OBCS from 5XFAD mice compared with vehicle controls, with reduced enzymatic degradation of Aβ due to lower neprilysin and insulin-degrading enzyme (IDE) expression. Furthermore, OBSCs from wild-type mice treated with L-AAA and synthetic amyloid presented 56% higher levels of Aβ in culture media compared to sections treated with Aβ alone, concomitant with reduced expression of IDE in culture medium, suggesting that astrocytes contribute to Aβ clearance and degradation. Quantification of hippocampal dendritic spines revealed a reduction in their density following L-AAA treatment in all groups analyzed. In addition, pharmacological ablation of astrocytes resulted in a decrease in spine size in 5XFAD OBCSs but not in OBCSs from WT treated with synthetic Aβ compared to vehicle control.
Conclusions
Astrocytes play a protective role in AD by aiding Aβ clearance and supporting synaptic plasticity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.