This paper describes a localization module for an autonomous wheelchair. This module includes a combination of various sensors such as odometers, laser scanners, IMU and Doppler speed sensors. Every sensor used in the module features variable covariance estimation in order to yield a final accurate localization. The main problem of a localization module composed of different sensors is the accuracy estimation of each sensor. Average static values are normally used, but these can lead to failure in some situations. In this paper, all the sensors have a variable covariance estimation that depends on the data quality. A Doppler speed sensor is used to estimate the covariance of the encoder odometric localization. Lidar is also used as a scan matching localization algorithm, comparing the difference between two consecutive scans to obtain the change in position. Matching quality gives the accuracy of the scan matcher localization. This structure yields a better position than a traditional odometric static covariance method. This is tested in a real prototype and compared to a standard fusion technique.
Our research presents a cost-effective navigation system for electric wheelchairs that utilizes the tongue as a human–machine interface (HMI) for disabled individuals. The user controls the movement of the wheelchair by wearing a small neodymium magnet on their tongue, which is held in place by a suction pad. The system uses low-cost electronics and sensors, including two electronic compasses, to detect the position of the magnet in the mouth. One compass estimates the magnet’s position while the other is used as a reference to compensate for static magnetic fields. A microcontroller processes the data using a computational algorithm that takes the mathematical formulations of the magnetic fields as input in real time. The system has been tested using real data to control an electric wheelchair, and it has been shown that a trained user can effectively use tongue movements as an interface for the wheelchair or a computer.
This paper presents a new method to increase odometric sensor accuracy by systematic and non-systematic errors processing. Mobile robot localization is improved combining this technique with a filter that fuses the information from several sensors characterized by their covariance. The process focuses on calculating the odometric speed difference respect to the filter to implement an error type detection module in real time. The correction of systematic errors consists in an online parameter adjustment using the previous information and conditioned by the filter accuracy. This data is also applied to design a variable odometric covariance which describes the sensor reliability and determines the influence of both errors on the robot localization. The method is implemented in a low-cost autonomous wheelchair with a LIDAR, IMU and encoders fused by an UKF algorithm. The experimental results prove that the estimated poses are closer to the real ones than using other well-known previous methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.