This work presents an FPGA based scalable fixed point QRD architecture based on Givens Rotation algorithm.The proposed QRD core utilizes an efficient pipelined and unfolded 2D MAC based systolic array architecture with dynamic partial reconfiguration(DPR) capability. An improved LUT based Newton-Raphson method is proposed for finding square root and inverse square root which helps in reducing the area by 71% and latency by 50%, while operating at a frequency 49% higher than the existing boundary cell architectures. The scalability of the QRD core is achieved using DPR which results in reduction in dynamic power and area utilization as compared to a static implementation. The proposed architecture is implemented on Xilinx Virtex-6 FPGA for any real matrices of size m × n where, 4 ≤ n ≤ 8 and m ≥ n by dynamically inserting or removing the partial modules. The evaluation results shows reduction in latency, area and power as compared to CORDIC based architectures. The proposed scalable QRD core is used for implementing a high performance adaptive equalizer(QRD-RLS Algorithm) used in mobile receiver's and the evaluation is done by transmitting BPSK symbols in the training mode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.