There is an increasing interest in developing porous metals or metallic foams for functional and structural applications. The study of the physical and mechanical properties of porous metals is very important and helpful for their application. In this paper, a novel sintered multilayer wire mesh porous plate material (WMPPs) with a thickness of 0.5 mm–3 mm and a porosity of 10–35% was prepared by winding, pressing, rolling, and subsequently vacuum sintering them. The pore size and total size distribution in the as-prepared samples were investigated using the bubble point method. The uniaxial tensile behavior of the WMPPs was investigated in terms of the sintering temperature, porosity, wire diameter, and manufacturing technology. The deformation process and the failure mechanism under the tensile press was also discussed based on the appearance of the fractures (SEM figures). The results indicated that the pore size and total size distribution were closely related to the raw material used and the sintering temperature. For the WMPPs prepared by the wire mesh, the pore structures were inerratic and the vast majority of pore size was less than 10 μm. On the other hand, for the WMPPs that were prepared by wire mesh and powder, the pore structures were irregular and the pore size ranged from 0 μm–50 μm. The experimental data showed that the tensile strength of WMPPs is much higher than any other porous metals or metallic foams. Higher sintering temperatures led to coarser joints between wires and resulted in higher tensile strength. The sintering temperature decreased from 1330 °C to 1130 °C and the tensile strength decreased from 296 MPa to 164 MPa. Lower porosity means that there are more metallurgical joints and metallic frameworks resisting deformation per unit volume. Therefore, lower porosities exhibit higher tensile strength. An increase of porosity from 17.14% to 32.5% led to the decrease of the tensile strength by 90 MPa. The coarser wires led to a bigger contact area between the interconnecting wires, resulting in a stronger sintering neck that exhibited higher tensile strength. The wire diameter increased from 81 μm to 122 μm and the tensile strength increased from 296 MPa to 362 MPa. The fracture morphology showed that the wires experience necking deformation and ductile fracture.
Novel stainless steel porous twisted short fiber materials (PTSFMs) with spatial composite intertexture structure are produced by compaction following with sintering of twisted short fibers. The stainless steel twisted short fibers are fabricated using a cutting stainless steel fiber ropes method with a self-developed rotary multi-cutter tool. The porous structure of the stainless steel PTSFMs exhibits a large difference in the through-thickness and in-plane direction, which results in differences in compressive behavior. During the compressive process, it is determined that the stainless steel PTSFMs exhibit typical elastic-plastic behaviors (three deformation stages) in the in-plane direction, but in the through-thickness direction, entered the compact densification zone after short-term nonlinear elastic deformation without a plastic platform stage. The compression deformation resistance in the through-thickness direction is obviously stronger than that in the in-plane direction at a given porosity. The compression strength and the anisotropy both decreased with increased porosity. The compression properties are anisotropic, which also result in different energy absorption efficiencies of the two directions. The relationship between the porosity and the energy absorption efficiency is not monotonically increasing or decreasing, but with the change of porosities, there is an optimal porosity, which has relatively high-energy absorption efficiency.
Metal-polymer composites can be used to synthesize material properties. A variety of interpenetrating phase composites have been produced by spontaneously infiltrating porous short-fiber preforms with unsaturated polyester resin under vacuum conditions. Porous preforms are fabricated by compacting and sintering short 304 stainless steel fibers from cutting stainless steel fiber ropes. Tensile experiments are conducted, and fractographs are examined via scanning electron microscopy. The results reveal that the tensile strength, elongation at maximum stress, and elasticity modulus of the IPCs increase with the increasing fiber fractions and exhibit anisotropy in different directions. The tensile strength and elongation at maximum stress are significantly improved compared with the consistent preforms. A nonlinear elastic behavior and sawtooth-like fluctuation during yield deformation are noted. Compared with the through-thickness direction, a higher tensile strength and larger elongation at maximum stress are observed in the in-plane direction. Finer-diameter fibers can improve the strength and increase the elongation at maximum stress. The tensile fracture surfaces show a mixture of brittle and plastic fracture characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.