The relative abundance of alternatively spliced long (␥2L) and short (␥2S) mRNAs of the ␥2 subunit of the ␥-amino butyrate type A (GABA A ) receptor was examined in dorsolateral prefrontal cortex of schizophrenics and matched controls by using in situ hybridization histochemistry and semiquantitative reverse transcription-PCR (RT-PCR) amplification. A cRNA probe identifying both mRNAs showed that the transcripts are normally expressed at moderately high levels in the prefrontal cortex. Consistent with previous studies, overall levels of ␥2 transcripts in prefrontal cortex of brains from schizophrenics were reduced by 28.0%, although this reduction did not reach statistical significance. RT-PCR, performed under nonsaturating conditions on total RNA from the same blocks of tissue used for in situ hybridization histochemistry, revealed a marked reduction in the relative proportion of ␥2S transcripts in schizophrenic brains compared with controls. In schizophrenics, ␥2S transcripts had fallen to 51.7% (؎7.9% SE; P < 0.0001) relative to control levels. Levels of ␥2L transcripts showed only a small and nonsignificant reduction of 16.9% (؎12.0% SE, P > 0.05). These findings indicate differential transcriptional regulation of two functionally distinct isoforms of one of the major GABA A receptor subunits in the prefrontal cortex of schizophrenics. The specific reduction in relative abundance of ␥2S mRNAs and the associated relative increase in ␥2L mRNAs should result in functionally less active GABA A receptors and have severe consequences for cortical integrative function.
Subcortical and corticothalamic inputs excite thalamic neurons via a diversity of glutamate receptor subtypes. Differential expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), kainate, and N-methyl-D-aspartate (NMDA) receptor subunits (GluR1-4; GluR5-7; NR1, NR2A-D) on a nucleus- and cell type-specific basis was examined by quantitative in situ hybridization histochemistry and by immunocytochemical staining for receptor subunits and colocalized gamma-aminobutyric acid (GABA) or calcium binding proteins. Levels of NMDA subunit expression, except NR2C, are higher than for the most highly expressed AMPA (GluR1,3,4) and kainate (GluR6) receptor subunits. Expression of NR2C, GluR2, GluR5, and GluR7 is extremely low. Major differences distinguish the reticular nucleus and the dorsal thalamus and, within the dorsal thalamus, the intralaminar and other nuclei. In the reticular nucleus, GluR4 is by far the most prominent, and NMDA receptors are at comparatively low levels. In the dorsal thalamus, NMDA receptors predominate. Anterior intralaminar nuclei are more enriched in GluR4 and GluR6 subunits than other nuclei, whereas posterior intralaminar nuclei are enriched in GluR1 and differ among themselves in relative NMDA receptor subunit expression. GABAergic intrinsic neurons of the dorsal thalamus express much higher levels of GluR1 and GluR6 receptor subunits than do parvalbumin- or calbindin-immunoreactive relay cells and low or absent NMDA receptors. Relay cells are dominated by NMDA receptors, along with GluR3 and GluR6 subunits not expressed by GABA cells. High levels of NR2B are found in astrocytes. Differences in NMDA and non-NMDA receptor profiles will affect functional properties of the thalamic GABAergic and relay cells.
Flare frequency distributions represent a key approach to addressing one of the largest problems in solar and stellar physics: determining the mechanism that counterintuitively heats coronae to temperatures that are orders of magnitude hotter than the corresponding photospheres. It is widely accepted that the magnetic field is responsible for the heating, but there are two competing mechanisms that could explain it: nanoflares or Alfvén waves. To date, neither can be directly observed. Nanoflares are, by definition, extremely small, but their aggregate energy release could represent a substantial heating mechanism, presuming they are sufficiently abundant. One way to test this presumption is via the flare frequency distribution, which describes how often flares of various energies occur. If the slope of the power law fitting the flare frequency distribution is above a critical threshold, α = 2 as established in prior literature, then there should be a sufficient abundance of nanoflares to explain coronal heating. We performed >600 case studies of solar flares, made possible by an unprecedented number of data analysts via three semesters of an undergraduate physics laboratory course. This allowed us to include two crucial, but nontrivial, analysis methods: preflare baseline subtraction and computation of the flare energy, which requires determining flare start and stop times. We aggregated the results of these analyses into a statistical study to determine that α = 1.63 ± 0.03. This is below the critical threshold, suggesting that Alfvén waves are an important driver of coronal heating.
In the first phase of this research, we conducted, audio-recorded, and transcribed seven focus groups with more than 50 English- or Spanish-speaking women of childbearing age. Qualitative analysis revealed the following themes: 1) expectation that participation would involve relationships based on trust that is built over time and impacted by cultural factors; 2) perceived characteristics of research staff that would help facilitate the development of trusting relationships; 3) perceptions about the location of the visits that may affect trust; 4) perceptions of a research study and trust for the institution conducting the study may affect trust; 5) connecting the study to larger communities, including faith communities, could affect trust and willingness to participate. In the second phase of this research, we conducted, recorded, transcribed, and analyzed interviews with leaders from diverse faith communities to explore the potential for research partnerships between researchers and faith communities. In addition to confirming themes identified in focus groups, faith leaders described an openness to research partnerships between the university and faith communities and considerations for the formation of these partnerships. Faith leaders noted the importance of finding common ground with researchers, establishing and maintaining trusting relationships, and committing to open, bidirectional communication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.