Genetic diversity and phylogenetic relationships among 568 individuals of two red jungle fowl subspecies (Gallus gallus spadiceus in China and Gallus gallus gallus in Thailand) and 14 Chinese domestic chicken breeds were evaluated with 29 microstaellite loci, the genetic variability within population and genetic differentiation among population were estimated, and then genetic diversity and phylogenetic relationships were analyzed among red jungle fowls and Chinese domestic fowls. A total of 286 alleles were detected in 16 population with 29 microsatellite markers and the average number of the alleles observed in 29 microsatellite loci was 9.86+/-6.36. The overall expected heterozygosity of all population was 0.6708+/-0.0251, and the number of population deviated from Hardy-Weinberg equilibrium per locus ranged from 0 to 7. In the whole population, the average of genetic differentiation among population, measured as FST value, was 16.7% (P<0.001), and all loci contributed significantly (P<0.001) to this differentiation. It can also be seen that the deficit of heterozygotes was very high (0.015) (P<0.01). Reynolds' distance values varied between 0.036 (Xiaoshan chicken-Luyuan chicken pair) and 0.330 (G. gallus gallus-Gushi chicken pair). The Nm value ranged from 0.533 (between G. gallus gallus and Gushi chicken) to 5.833 (between Xiaoshan chicken and Luyuan chicken). An unrooted consensus tree was constructed using the neighbour-joining method and the Reynolds' genetic distance. The heavy-body sized chicken breeds, Luyuan chicken, Xiaoshan chicken, Beijing Fatty chicken, Henan Game chicken, Huainan Partridge and Langshan chicken formed one branch, and it had a close genetic relationship between Xiaoshan chicken-Luyuan chicken pair and Chahua chicken-Tibetan chicken pair. Chahua chicken and Tibetan chicken had closer genetic relationship with these two subspecies of red jungle fowl than other domestic chicken breeds. G. gallus spadiceus showed closer phylogenetic relationship with Chinese domestic chicken breeds than G. gallus gallus. All 29 microstaellite loci in this study showed high levels of polymorphism and significant genetic differentiation was observed among two subspecies of red jungle fowl and 14 Chinese domestic chicken breeds. The evolutional dendrogram is as follows: evolutional breeds-->primitive breeds (Chahua chicken and Tibetan)-->red jungle fowl in China (G. gallus spadiceus)-->red jungle fowl in Thailand (G. gallus gallus). The results supported the theory that the domestic fowls might originate from different subspecies of red jungle fowl and Chinese domestic fowls had independent origin.
In this study, we investigated the mechanism of signaling pathway-mediated differentiation of embryonic stem cells (ESCs) into spermatogonial stem cells (SSCs) in chicken. The Wnt signaling pathway was identified based on previous RNA Sequencing results and was proven a crucial signaling pathway that participates in the differentiation of ESCs into SSCs. In retinoic acid (RA) induction experiments in vitro, we found that Wnt signaling expression was inhibited by Wnt5a-shRNA, resulting in decreased expression of corresponding marker genes in SSCs, C-kit, Cvh, integrin α6 and integrin β1, but it was significantly promoted by RA treatment. Immunofluorescence assay showed that percentage of C-kit, Cvh, and integrin α6 and integrin β1-positive cells in RA treatment group and Wnt5a overexpression group was significantly higher than that in Wnt5a signaling interference group. Results of fluorescence-activated cell sorting analysis (FACS) also showed that proportion of germ-like cells was reduced by 14.3% (from 18.3% to 4.0%) at day 4 and 15.4% (from 18.6% to 3.2%) at day 12 after transfection, respectively. In experiments in vivo, shRNA-Wnt5a was stably expressed in fertilized chicken embryos and significantly reduced germ cell formation by 11.3% (from 21.7% to 10.4%) and 3.7% (6.4% from 10.1%). Results of quantitative PCR (qRT-PCR) and western blot assays showed that the expression of some specific germ cell marker genes, integrin α6 and integrin β1, was significantly suppressed following Wnt5a signaling interference in vivo. Taken together, our study suggests that Wnt signaling pathway could regulate positively the differentiation of chicken ESCs into SSCs through Wnt5a.
The objectives of the present study were to screen for key gene and signaling pathways involved in the production of male germ cells in poultry and to investigate the effects of the transforming growth factor beta (TGF-b) signaling pathway on the differentiation of chicken embryonic stem cells (ESCs) into male germ cells. The ESCs, primordial germ cells, and spermatogonial stem cells (SSCs) were sorted using flow cytometry for RNA sequencing (RNA-seq) technology. Male chicken ESCs were induced using 40 ng/mL of bone morphogenetic protein 4 (BMP4). The effects of the TGF-b signaling pathway on the production of chicken SSCs were confirmed by morphology, quantitative real-time polymerase chain reaction, and immunocytochemistry. One hundred seventy-three key genes relevant to development, differentiation, and metabolism and 20 signaling pathways involved in cell reproduction, differentiation, and signal transduction were identified by RNA-seq. The germ cells formed agglomerates and increased in number 14 days after induction by BMP4. During the induction process, the ESCs, Nanog, and Sox2 marker gene expression levels decreased, whereas expression of the germ cell-specific genes Stra8, Dazl, integrin-a6, and c-kit increased. The results indicated that the TGF-b signaling pathway participated in the differentiation of chicken ESCs into male germ cells.
To study self-renewal, genetic modification, and differentiation of avian spermatogonial stem cells (SSCs), we isolated chicken SSCs from fetal testes on the 16th hatching day via enzyme digestion, and then cultured the SSCs over 2 months after purification in vitro. SSCs were identified by alkaline phosphatase staining and SSEA-1 fluorescence. The EGFP gene was transfected into SSCs by three different methods: electroporation, liposome transfer and calcium acid phosphate precipitation. The transfection rate and cell survival rate using electroporation were higher than when using liposomes or calcium acid phosphate (20.52% vs. 9.75% and 5.61%; 69.86% vs. 65.00% and 51.16%, respectively). After selection with G418 for 8 days, the transgenic SSCs were transplanted into the testes of cocks treated with busulfan. Twenty-five days after transplantation, the recipients' semen was light ivory in color, and the density of spermatozoa was 3.87 (x10(7)/ml), with 4.25% expressing EGFP. By 85 days after transplantation, the number of spermatozoa increased to 32.7 (x10(7)/ml) and the rate of EGFP expression was 16.25%. Frozen sections of the recipients' testes showed that transgenic SSCs were located on the basal membrane of the seminiferous tubules and differentiated into spermatogenic cells at different stages. The EGFP gene was successfully amplified from the DNA of all recipients' semen samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.