Crystallographic characterization of DNA polymerase beta (pol beta) has suggested that multiple-domain and subdomain motions occur during substrate binding and catalysis. NMR studies of [methyl-(13)C]methionine-labeled pol beta were conducted to characterize the structural and dynamic response to ligand binding. The enzyme contains seven methionine residues, one of which is at the amino terminus and is partially removed by the expression system. Three of the methyl resonances were readily assigned using site-directed mutants. Assignment of the resonances of Met155, Met158, and Met191 was more difficult due to the spatial proximity of these residues, so that assignments were based on NOESY-HSQC data and on the response to paramagnetic Co(2+) addition, as well as shift perturbations observed for the site-directed mutants. The response of the methyl resonances to substrate binding was evaluated by the serial addition of a template oligonucleotide, a downstream 5'-phosphorylated oligonucleotide, and a primer oligonucleotide to create a two-nucleotide-gapped DNA substrate. Addition of the single-stranded template DNA resulted in selective broadening of the methyl resonance of Met18 in the 8 kDa lyase domain, and this resonance then shifted and sharpened upon addition of a 5'-phosphate-terminated downstream complementary oligonucleotide. Conversion of the two-nucleotide-gapped DNA substrate to a single-nucleotide-gapped substrate by incorporation of ddCMP produced a small perturbation of the Met236 resonance, which makes contact with the primer strand in the crystal structure. The addition of a second equivalent of ddCTP to form the pol beta-DNA-ddCTP ternary complex resulted in significant shifts for the resonances corresponding to Met155, Met191, Met236, and Met282. The Met155 methyl resonance is severely broadened, while the Met191 and Met282 resonances exhibit significant but less extreme broadening. Since only Met236 makes contact with the substrate, the effects on Met155, Met236, and Met282 result from indirect conformational and dynamic perturbations. Previous crystallographic characterization of this abortive complex indicated that a polymerase subdomain or segment (alpha-helix N) repositions itself to form one face of the binding pocket for the nascent base pair. Met282 serves as a probe for motion in this segment. Addition of Mg(2+)-dATP to pol beta in the absence of DNA produced qualitatively similar but much smaller effects on Met191 and Met155, but did not strongly perturb Met282, leading to the conclusion that Mg(2+)-dATP alone is insufficient to produce the large conformational changes that are observed in the abortive complex involving the gapped DNA with a blocked primer and ddNTP. Thus, the NMR data indicate that the nucleotide-DNA interaction appears to be essential for conformational activation.
In the aldohexopyranose idose, the unique presence of three axial ring hydroxyl groups causes considerable conformational flexibility, rendering it challenging to study experimentally and an excellent model for rationalising the relationship between puckering and anomeric configuration. Puckering in methyl α- and β-l-idopyranosides was predicted from kinetically rigorous 10 μs simulations using GLYCAM11 and three explicit water models (TIP3P, TIP4P and TIP4P-EW). In each case, computed pyranose ring three-bond (vicinal) 1H-1H spin-couplings (3JH,H) trended with NMR measurements. These values, calculated puckering exchange rates and free energies were independent of the water model. The α- and β-anomers were 1C4 chairs for 85% and >99% of their respective trajectories and underwent 1C4→4C1 exchange at rates of 20 μs-1 and 1 μs-1. Computed α-anomer 1C4↔4C1 puckering rates depended on the exocyclic C6 substituent, comparing hydroxymethyl with carboxyl from previous work. The slower kinetics and restricted pseudorotational profile of the β-anomer were caused by water occupying a cavity bounded by the anomeric 1-O-methyl and the C6 hydroxymethyl groups. This finding rationalises the different methyl α- and β-l-idopyranoside 3JH,H values. Identifying a relationship between idopyranose anomeric configuration, μs-puckering and water structure facilitates engineering of biologically and commercially important derivatives and underpins deciphering presently elusive structure-function relationships in the glycome.
13C-13C Spin-spin coupling constants (JCC) have been measured in a group of aldohexopyranoses and methyl aldopyranosides singly labeled with 13C at different sites to confirm and extend prior correlations between JCC magnitude and sign and saccharide structure. Structural correlations for 2JC1,C3, 2JC2,C4, 2JC4,C6, and 2JC1,C5 have been confirmed using density functional theory calculations to test empirical predictions. These geminal couplings depend highly on the orientation of C-O bonds appended to the terminal coupled carbons, but new evidence suggests that 2JCCC values are also affected by intervening carbon structure and C-O bond rotation. 3JC1,C6 and 3JC3,C6 values show Karplus-like dependences but also are affected by in-plane terminal hydroxyl substituents. In both cases, rotation about the C5-C6 bond modulates the coupling due to the alternating in-plane and out-of-plane O6. 3JC3,C6 is also affected by C4 configuration. Both 3JC1,C6 and 3JC3,C6 are subject to remote effects involving the structure at C3 and C1, respectively. New structural correlations have been determined for 2JC3,C5, which, like 3JC3,C6, shows a remote dependence on anomeric configuration. Investigations of dual pathway 13C-13C couplings, 3+3JC1,C4 and 3+3JC2,C5, revealed an important additional internal electronegative substituent effect on 3JCC in saccharides, a structural factor undocumented previously and one of importance to the interpretation of trans-glycoside 3JCOCC in oligosaccharides.
An ensemble of J, J, and J values was measured in aqueous solutions of methyl α- and β-d-idohexopyranosides containing selective C-enrichment at various carbons. By comparing these J-couplings to those reported previously in the α- and β-d-idohexopyranoses, methyl glycosidation was found to affect ring conformational equilibria, with the percentages ofC forms based on J analysis as follows: α-d-idopyranose, ∼18%; methyl α-d-idopyranoside, ∼42%; methyl β-d-idopyranoside, ∼74%; β-d-idopyranose, 82%. J and J values were analyzed with assistance from theoretical values obtained from density functional theory (DFT) calculations. Linearized plots of the percentages of C against limiting J and J values in the chair forms were used to (a) determine the compatibility of the experimental J and J values with C/C ratios determined from J analysis and (b) determine the sensitivity of specific J and J values to ring conformation. Ring conformational equilibria for methyl idohexopyranosides differ significantly from those predicted from recent molecular dynamics (MD) simulations, indicating that equilibria determined by MD for ring configurations with energetically flat pseudorotational itineraries may not be quantitative. J-couplings in methyl α-l-[6-C]idopyranosiduronic acid and methyl α-d-[6-C]glucopyranosiduronic acid were measured as a function of solution pH. The ring conformational equilibrium is pH-dependent in the iduronic acid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.