SUMMARY
Gene inactivation by transposon insertion or allelic exchange is a powerful approach to probe gene function. Unfortunately, many microbes, including Chlamydia, are not amenable to routine molecular genetic manipulations. Here we describe an arrayed library of chemically-induced mutants of the genetically-intransigent pathogen Chlamydia trachomatis, in which all mutations have been identified by whole genome sequencing, providing a platform for reverse genetic applications. An analysis of possible loss-of-function mutations in the collection uncovered plasticity in the central metabolic properties of this obligate intracellular pathogen. We also describe the use of the library in a forward genetic screen that identified InaC as a bacterial factor that binds host ARF and 14-3-3 proteins to modulate F-actin assembly and Golgi redistribution around the pathogenic vacuole. This work provides a robust platform for reverse and forward genetic approaches in Chlamydia and should serve as a valuable resource to the community.
Chlamydia trachomatis, a pathogen responsible for diseases of significant clinical and public health importance, remains poorly characterized because of its intractability to routine molecular genetic manipulation. We have developed a combinatorial approach to rapidly generate a comprehensive library of genetically defined mutants. Chemical mutagenesis, coupled with whole-genome sequencing (WGS) and a system for DNA exchange within infected cells, was used to generate Chlamydia mutants with distinct phenotypes, map the underlying genetic lesions, and generate isogenic strains. As a result, we identified mutants with altered glycogen metabolism, including an attenuated strain defective for type II secretion. The coupling of chemically induced gene variation and WGS to establish genotype-phenotype associations should be broadly applicable to the large list of medically and environmentally important microorganisms currently intractable to genetic analysis.genetics | genomics | lateral gene transfer | obligate pathogens
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.