The endoplasmic reticulum (ER) is the major site of calcium storage and protein folding. It has a unique oxidizing-folding environment due to the predominant disulfide bond formation during the process of protein folding. Alterations in the oxidative environment of the ER and also intra-ER Ca2+ cause the production of ER stress-induced reactive oxygen species (ROS). Protein disulfide isomerases, endoplasmic reticulum oxidoreductin-1, reduced glutathione and mitochondrial electron transport chain proteins also play crucial roles in ER stress-induced production of ROS. In this article, we discuss ER stress-associated ROS and related diseases, and the current understanding of the signaling transduction involved in ER stress.
BackgroundSalvia miltiorrhiza (SM) has long been used as a traditional oriental medicine for cardiovascular disease. Accumulating evidence also indicates that SM has anti-osteoporotic effects. This study was conducted to examine the SM-induced anti-osteoporotic effect and its possible mechanisms with various doses of SM.MethodsWe studied Sprague-Dawley female rats aged 12 weeks, divided into six groups: sham-operated control (SHAM), OVX rats supplemented with SM (1, 3, 10 and 30 mg/kg) orally for 8 weeks. At the end of the experiment, blood samples were collected and biochemistry analysis was performed. Specimens from both tibia and liver were processed for light microscopic examination. DEXA and μ-CT analyses of the tibia were also performed.ResultsSM treatment significantly ameliorated the decrease in BMD and trabecular bone mass according to DEXA and trabecular bone architecture analysis of trabecular bone structural parameters by μ-CT scanning. In serum biochemical analysis, SM decreased the released TRAP-5b, an osteoclast activation marker and oxidative stress parameters including MDA and NO induced by OVX.ConclusionsThe preventive effect of SM was presumably due to its anti-oxidative stress partly via modulation of osteoclast maturation and number. In current study, SM appears to be a promising osteoporosis therapeutic natural product.
Mitochondria, also known as "Power House of cell," are crucial organelles, regulating energy metabolism. Recently, an involvement of mitochondria in cancer occurrence and metastasis has been proposed. The roles of mitochondria in cancer progression/metastasis include alteration of glycolysis, regulation of ROS and suppression of intrinsic apoptosis. This mini-review explains the specific mitochondrial characteristics during cancer metastasis with past and recent findings. It may contribute to understanding mitochondria-related mechanisms of cancer metastasis.
Hyperactivation of phosphoinositol 3-kinase (PI3K) has been suggested to be a potential mechanism for endoplasmic reticulum (ER) stress-enhanced airway hyperresponsiveness, and PI3K inhibitors have been examined as asthma therapeutics. However, the regulatory mechanism linking PI3K to ER stress and related pathological signals in asthma have not been defined. To elucidate these pathogenic pathways, we investigated the influence of a selective PI3Kδ inhibitor, IC87114, on airway inflammation in an ovalbumin/lipopolysaccharide (OVA/LPS)-induced asthma model. In OVA/LPS-induced asthmatic mice, the activity of PI3K, downstream phosphorylation of AKT and activation of nuclear factor-κB (NF-κB) were all significantly elevated; these effects were reversed by IC87114. IC87114 treatment also reduced the OVA/LPS-induced ER stress response by enhancing the intra-ER oxidative folding status through suppression of protein disulfide isomerase activity, ER-associated reactive oxygen species (ROS) accumulation and NOX4 activity. Furthermore, inositol-requiring enzyme-1α (IRE1α)-dependent degradation (RIDD) of IRE1α was reduced by IC87114, resulting in a decreased release of proinflammatory cytokines from bronchial epithelial cells. These results suggest that PI3Kδ may induce severe airway inflammation and hyperresponsiveness by activating NF-κB signaling through ER-associated ROS and RIDD–RIG-I activation. The PI3Kδ inhibitor IC87114 is a potential therapeutic agent against neutrophil-dominant asthma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.