This paper studies the improvement of transient stability of a single-Machine Infinite-Bus (SMIB) power system using Proportional Derivative (PD) type Static Synchronous Series Compensator (SSSC) and damping controllers. The design problem has been considered as optimisation problem and a modified version of recently proposed Sine Cosine Algorithm (SCA) has been employed for determining the optimal controller parameters. Proposed modified SCA (mSCA) algorithm is first tested using bench mark test functions and compared with SCA, and other heuristic evolutionary optimization algorithms like Grey Wolf optimization (GWO), Particle Swarm optimization (PSO), Gravitational Search algorithm (GSA) and Differential Evolution algorithm to show its superiority. The proposed mSCA algorithm is then applied to optimize simultaneously the PD type lead lag controller parameters pertaining to SSSC and power system stabilizer(PSS). The proposed controller provides sufficient damping for power system oscillation in different operating conditions and disturbances. Results analysis reveal that proposed mSCA technique provides higher effectiveness and robustness in damping oscillations of the power system and increases the dynamic stability more.
This chapter presents the design of JAYA-FOPIDC to inject the optimal dose of insulin through the MID for blood glucose (BG) regulation in Type-I diabetes mellitus (TIDM) patients. In this strategy, the controller parameters are tuned based on the JAYA optimization technique for better control execution. The capability of the JAYA-FOPIDC as to accuracy, robustness and stability is tested by use of MATLAB and SIMULINK. The procured outputs reveal the better implementation of JAYA-FOPIDC to regulate the BG level within the range of normoglycemia (70-120 mg/dl). The justification of improved control execution of the JAYA-FOPIDC is revealed by the relative result examination with different prominent control techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.